На территории московской области ведётся сельское хозяйство, представленное как растениеводством, так и животноводством. около 40% территории московской области используется в сельском хозяйстве; наименее освоены сельским хозяйством северные, восточные и западные окраинные районы. в южной части области, особенно к югу от оки, более 50% земель используется в сельском хозяйстве. сельское хозяйство имеет преимущественно пригородную специализацию. растениеводство характерно преимущественно для южной части области. бо́льшая часть посевных площадей (свыше3/5) занята кормовыми культурами. большие площади отведены под посевы зерновых: (пшеницы, ячменя, овса, ржи). значительную роль в растениеводстве региона играет картофелеводство. распространено тепличное овощеводство, например, в г. московский имеется крупнейший в европе тепличный комплекс. выращиваются также цветы, грибы (шампиньоны и др). животноводство преобладает над растениеводством; и главным образом направлено на производство молока и мяса. помимо крупного рогатого скота, повсеместно разводятся свиньи и куры.
Задачу можно решить двумя 1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе; 2) и через привлечение теоремы Менелая. Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
; ; и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет: