Строим график, фигура на картинке.Синим цветом x=(y-2)y, розовым y=-x По определению площадь считается двойным интегралом по dxdy, остаётся определиться с границами интегрирования. Смотрим на картинку и считаем: Как выбрали пределы интегрирования? Глядим на рисунок. В заданной фигуре x меняется от -1 до 0, переменная y меняется от параболической функции до прямой. Прямая y=-x, а в параболе выражаем y через x, получаем нижний предел интегрирования. Остаётся взять интеграл: По dy берётся без трудностей, по dx распадается на три табличных интеграла
т.к. основание больше 1 и равны, сравним показатели.
х²+3х-3> 0
(х+3)(х-1)> 0
{х+3> 0 {х+3< 0
{х-1> 0 {х-1< 0
{х> -3 {х< -3
{х> 1 {х< 1
х∈(1; +∞) х∈(-∞; -3)
ответ: х∈(-∞; -3)∪(1; +∞)