Пошаговое объяснение:
Решение.
Если внимательно посмотреть на уравнение, то увидим, что уравнение является обычным квадратным, у которого вместо неизвестной переменной выступает тригонометрическая функция косинус. Подобные уравнения обычно решаются методом замены этой тригонометрической функции на любую переменную. Итак, выполним следующую замену:
Пусть {\cos x\ }=z. При этом учитываем, что значения функции косинус определены на промежутке от —1 до 1. Следовательно и переменная z также может принимать только значения из указанного промежутка.
Подставим теперь вместо функции новую переменную в уравнение:
\[{2z}^2+z-1=0\]
Решаем полученное уравнение с вычисления его дискриминанта:
\[D=1^2-4\cdot 2\cdot \left(-1\right)=1+8=9\]
Находим корни:
\[z_1=\frac{-1-\sqrt{9}}{2\cdot 2}=\frac{-1-3}{4}=-1\]
\[z_2=\frac{-1+\sqrt{9}}{2\cdot 2}=\frac{-1+3}{4}=\frac{1}{2}\]
Оба корня входят в промежуток от —1 до 1.
Теперь нужно вернуться от выбранной переменной к тригонометрической функции и решить полученные уравнения.
Рассмотрим первый вариант корня:
\[z_1=-1\]
\[{\cos x\ }=-1\]
\[x=\pm \left(\pi-{\arccos 1\ }\right)+2\pi k\]
\[x=\pm \left(\pi-0\right)+2\pi k\]
\[x=\pm \pi+2\pi k\]
Рассмотрим второй вариант корня:
\[z_2=\frac{1}{2}\]
\[{\cos x\ }=\frac{1}{2}\]
\[x=\pm {\arccos \frac{1}{2}\ }+2\pi n\]
\[x=\pm \frac{\pi}{3}+2\pi n\]
Переменные n и k принадлежат множеству Z.
ответ. x=\pm \pi+2\pi k, x=\pm \frac{\pi}{3}+2\pi n, n,\ k\in Z.
У равнобедренного треугольника: две равные стороны и основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см - основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см