-11
Пошаговое объяснение:
Когда перед выражением в скобках стоит знак +, тогда оно остается прежним
\begin{gathered}a) \int{(x^4-8x^3+4x)}dx=\\ | \int{x^{\alpha}dx}= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ = \int{x^4}dx-8\int{x^3}dx+4\int{x^1}dx=\\ = \frac{x^{4+1}}{4+1}-8 \frac{x^{3+1}}{3+1}+4 \frac{x^{1+1}}{1+1}+C=\\ = \frac{x^5}{5}- \frac{8x^4}{4}+ \frac{4x^2}{2}+C=\\ = \frac{x^5}{5}-2x^4+2x^2+c;\\ \end{gathered}a)∫(x4−8x3+4x)dx=∣∫xαdx=α+1xα+1+C∣=∫x4dx−8∫x3dx+4∫x1dx==4+1x4+1−83+1x3+1+41+1x1+1+C==5x5−48x4+24x2+C==5x5−2x4+2x2+c;
\begin{gathered}b) \int{\cos(2x)sin(x)}dx=|d(\cos(x))=-\sin(x)dx|=\\ =-\int{\cos(2x)d(\cos(x))}=\\ |\cos(2\alpha)=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha|\\ =-\int{(2\cos^2(x)-1)}d(\cos(x))=| t=\cos(x)|=\\ =-\int{(2t^2-1)}dt=|\int{x^{alpha}}dx= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ =-2\int{t^2}dt+\int{t^0}dt=-2 \frac{t^{2+1}}{2+1}+ \frac{t^{0+1}}{0+1}=\\ =- \frac{2}{3}t^3+t+C=|t=\cos(x)|=\cos(x)- \frac{2}{3}\cos^3(x)+C=\\ \cos(x)(1- \frac{2}{3}\cos^2(x))+C=\\ =\cos(x)(1- \frac{2}{3}(1-\sin^2(x))+C= \end{gathered}b)∫cos(2x)sin(x)dx=∣d(cos(x))=−sin(x)dx∣==−∫cos(2x)d(cos(x))=∣cos(2α)=cos2α−sin2α=2cos2α−1=1−2sin2α∣=−∫(2cos2(x)−1)d(cos(x))=∣t=cos(x)∣==−∫(2t2−1)dt=∣∫xalphadx=α+1xα+1+C∣=−2∫t2dt+∫t0dt=−22+1t2+1+0+1t0+1==−32t3+t+C=∣t=cos(x)∣=cos(x)−32cos3(x)+C=cos(x)(1−32cos2(x))+C==cos(x)(1−32(1−sin2(x))+C=
\begin{gathered}=\cos(x)(1- \frac{2}{3}+ \frac{2}{3}\sin^2(x))+C=\\ =\cos(x)( \frac{1}{3}+ \frac{2}{3}\sin^2(x))+C=\\ = \frac{1}{3}\cos(x)(1+2\sin^2(x))+C; \end{gathered}=cos(x)(1−32+32sin2(x))+C==cos(x)(31+32sin2(x))+C==31cos(x)(1+2sin2(x))+C;
\begin{gathered}c)\int(e^{3x}+1)dx=\int{e^{3x}}dx+\int{}dx=\\ |\int{e^x}dx=e^x+C; \int{x^\alpha}dx= \frac{x^{\alpha+1}}{\alpha+1}+C;d(x)= \frac{1}{3}dx|}\\ = \frac{1}{3}\int{e^{3x}}d(3x)+\int{x^0}dx=\\ = \frac{1}{3}e^{3x}+ \frac{x^{0+1}}{0+1}+C=\\ = \frac{1}{3}e^{3x}+x+C \end{gathered}
так так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так
Пошаговое объяснение:
ак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так
11
Пошаговое объяснение:
-4+(-7)=-11
просто сложили отрицательные числа