Соч, математика, 6 класс, 3 четверть, 1 вариант Задания. 1. Какие из предложенных уравнений являются равносильными? A) (3-х)*(3+x)=0 Б) 2*(x-5)=12 В) -4*х=12 Г) x+10=21 А)А,Б,В В) Б.Г C) А.Г D) В,Г 2. Из данных изображений выберите те, которые имеют ось симметрии и начертите их. Назвать фигуры, которые имеют оси симметрии 7 10 3. Изобразите вектор PS . Запишите начало и конец вектора. 4. Катер за 4 часа по озеру и за 2 часа против течения реки проплывает такое же расстояние, что за 5 ч по течению реки. Найдите собственную скорость катера, если скорость течения реки равна 2 км/ч. 5. Решите уравнение: 5/х/- 33 -11|x|=-14|x|-9 6. Приведите неравенство к виду kx > b или kxs bи решите. 5x -2 х-2 x-3 - x2 4 3 2 7. Отметьте на координатной плоскости точки А (-3;-6), В (9:2), C (-2;6) и D (5;-5), 1) Проведите прямые AB и CD. 2) Найдите координаты точки пересечения прямых AB и CD. 3) Найдите координаты точки пересечения прямой AB с осью абсцисс. 4) Найдите координаты точки пересечения прямой CD с осью ординат,
1)При умножении, например, x на y, они будут называться множителями, а полученное число, допустим, z- произведение (x*y=z). При делении x на y, х будет называться делимым, у делителем, а полученное число z частным (x:y=z). 2)Сумму двух чисел можно умножить на какое-либо число двумя пусть будут числа 2,3 и 4): а) Есть выражение (2+3)*4, сначала выполняем сложение, получаем 5*4 и выполняем умножение, получаем 20. б) Воспользуемся одним из свойств умножения: (2+3)*4=2*4+3*4, отсюда получаем сумму 8 и 12, складываем их и получаем также 20. Как видите, ответ не меняется. 3) Можно воспользоваться теми же самыми какими мы пользовались в предыдущем вопросе: либо сложить и разделить полученное на 6, (т.е. 60 на 6, ответ 10), либо почленно разделить 36 на 6 и 24 на 6 и сложить полученные результаты, т.е. 6+4, также получаем 10. 4)При умножении любого числа на 0 получается 0 (17382957*0=0, 15*0=0, любое число), при умножении любого числа на 1 получается это же самое число ( 6*1=6, 150*1=150, 0*1=0) 5) При делении на 1, также как и при умножении, всегда выходит то же самое число, при делении 0 на любое число выходит 0 (но на 0 делить нельзя). 6) В таком случае останется то число, на которое не делили. 6*5:6= 1*5=5. 7) Проверить умножение можно разделив произведение на любой из множителей. Частное проверяется умножением частного на делитель, либо делением делимого на частное.
1)При умножении, например, x на y, они будут называться множителями, а полученное число, допустим, z- произведение (x*y=z). При делении x на y, х будет называться делимым, у делителем, а полученное число z частным (x:y=z). 2)Сумму двух чисел можно умножить на какое-либо число двумя пусть будут числа 2,3 и 4): а) Есть выражение (2+3)*4, сначала выполняем сложение, получаем 5*4 и выполняем умножение, получаем 20. б) Воспользуемся одним из свойств умножения: (2+3)*4=2*4+3*4, отсюда получаем сумму 8 и 12, складываем их и получаем также 20. Как видите, ответ не меняется. 3) Можно воспользоваться теми же самыми какими мы пользовались в предыдущем вопросе: либо сложить и разделить полученное на 6, (т.е. 60 на 6, ответ 10), либо почленно разделить 36 на 6 и 24 на 6 и сложить полученные результаты, т.е. 6+4, также получаем 10. 4)При умножении любого числа на 0 получается 0 (17382957*0=0, 15*0=0, любое число), при умножении любого числа на 1 получается это же самое число ( 6*1=6, 150*1=150, 0*1=0) 5) При делении на 1, также как и при умножении, всегда выходит то же самое число, при делении 0 на любое число выходит 0 (но на 0 делить нельзя). 6) В таком случае останется то число, на которое не делили. 6*5:6= 1*5=5. 7) Проверить умножение можно разделив произведение на любой из множителей. Частное проверяется умножением частного на делитель, либо делением делимого на частное.
2)Сумму двух чисел можно умножить на какое-либо число двумя пусть будут числа 2,3 и 4):
а) Есть выражение (2+3)*4, сначала выполняем сложение, получаем 5*4 и выполняем умножение, получаем 20.
б) Воспользуемся одним из свойств умножения: (2+3)*4=2*4+3*4, отсюда получаем сумму 8 и 12, складываем их и получаем также 20. Как видите, ответ не меняется.
3) Можно воспользоваться теми же самыми какими мы пользовались в предыдущем вопросе: либо сложить и разделить полученное на 6, (т.е. 60 на 6, ответ 10), либо почленно разделить 36 на 6 и 24 на 6 и сложить полученные результаты, т.е. 6+4, также получаем 10.
4)При умножении любого числа на 0 получается 0 (17382957*0=0, 15*0=0, любое число), при умножении любого числа на 1 получается это же самое число ( 6*1=6, 150*1=150, 0*1=0)
5) При делении на 1, также как и при умножении, всегда выходит то же самое число, при делении 0 на любое число выходит 0 (но на 0 делить нельзя).
6) В таком случае останется то число, на которое не делили. 6*5:6= 1*5=5.
7) Проверить умножение можно разделив произведение на любой из множителей. Частное проверяется умножением частного на делитель, либо делением делимого на частное.