Дано:
стороны треугольника соотносятся как 2:3:4
P(MNO) = 27 см
Найти: стороны треугольника
По свойству средней линии треугольника, три средние линии делят исходный треугольник на четыре равных треугольника. Треугольник MNO — серединный. По свойству серединного треугольника следует, что
P(MNO) = (P(ABC)) / 2
Пусть стороны треугольника будут 2х, 3х, 4х соответсвенно.
AB = 2x, BC = 3x, AC = 4x
P(ABC) = AB + BC + AC = 2x + 3x + 4x = 9x
Дано, что P(MNO) = 27 см, значит
27 = (9х) / 2
9х = 54
х = 6, отсюда следует, что стороны треуголника равны
AB = 2x = 12, BC = 3x = 18, AC = 4x = 24
ответ: 12; 18; 24.
Пусть площадь поля, засеянного овсом - х,
тогда площадь поля, засеянного пшеницей - 2х.
Общая площадь поля - у.
2 год:
Площадь поля, засеянного овсом - 2х +20%, или 2х+0,2х;
Площадь поля, засеянного пшеницей - х+15%, или х+0,15х.
Общая площадь поля - у+11.
Составим систему уравнений:
х+2х=у
2х+0,2х+х+0,15х=у+15.
Подставим во 2е уровнения вместо у выражение:
2х+0,2х+х+0,15х=х+2х+11
Решаем
2х+0,2х+х+0,15х-х-2х=11
0,35х=11
х=11/0,35
х=31,43
Вычислим у:
у=х+2х
у=31,43+2*31,43
у=94,29 (общая площадь поля в первом году)
Во втором году на 11 га больше, соответственно:
94,29+11=105,29 га - площадь поля, засеянного пшеницей и овсом на следующий год