ДАНО:
K= 1000 - начальная сумма
с = -5%. - месячная ставка.
НАЙТИ: Срок уменьшения до заданной суммы.
РЕШЕНИЕ
Вычисляем по по формуле:
С = К*(1 - n*c%), где n -срок в месяцах.
а) 800 = 1000 - 1000*0,05*n = 1000 - 50*n
Каждый месяц сумма уменьшается на 50 манатов. Упрощаем
50*n = 1000 - 800 = 200
n = 200 : 50 = 4 месяца до 800 манат - ответ
б) 700 = 1000 - 50*n
50* n = 1000 - 700 = 300
n = 300: 50 = 6 месяцев до 700 манат - ответ
в) 400 = 1000 - 50*n
50*n = 600
n = 600 : 50 = 12 мес = 1 год до 400 манат - ответ
г) 50*n = 1000 - 100 = 900
n = 900 : 50 = 18 мес до 100 манат - ответ
33/65
Пошаговое объяснение:
так как sin(a+b)=sin(a)*cos(b)+sin(b)*cos(a),
то sin(a+b)=
так как:
1) sin (a) = 3/5 (по условию)
2) cos(b) = -5/13 (по условию)
отметим, что так как а принадлежит 2-ой координатной четверти на графике, то sin(a)>0, cos(a)<0, но b принадлежит 3-ей координатной четверти, поэтому sin(b)<0, cos(b)<0
при этом sin(х) ^2 + cos (х) ^2=1
поэтому:
3) sin(b) ^2 + (-5/13)^2=1
sin(b) ^2+25/169 = 1
sin(b) ^2 = 1 - 25/169
sin(b) ^2 = 144/169 = (12/13)=(-12/13), при этом sin(b)<0
следовательно sin(b) = -12/13
4) cos(a) ^2 + (3/5)^2 = 1
cos(a) ^2 + 9/25 =1
cos(a) ^2 = 1 - 9/25
cos(a) ^2 = 16/25 = (4/5)^2 = (-4/5)^2, при этом cos(a)<0
следовательно cos(a) = -4/5
5) sin(a)*cos(b)+sin(b)*cos(a) =
= (3/5) * (-5/13) + (-12/13) * (-4/5) = -15/65 + 48/65 = (48-15)/65 = 33/65
2)h * 12/7=20, h=11ц.2/3 см(высота),
3)V=abh=45*20* 11ц. 2/3=10500см^3=10.5дм^3