М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
иришка98
иришка98
12.04.2023 13:16 •  Математика

Найти периметр: найдите периметр огорода ,если его длина равна 5 м, а ширина на 2 м короче.

👇
Ответ:
patimatgemmamailru
patimatgemmamailru
12.04.2023
Решение
1)5-2=3 м ширина
2) периметр это сумма длине всех сторон
5+5+3+3=16 м
ответ: Р огорода равен 16м
4,8(67 оценок)
Ответ:
jahongir21
jahongir21
12.04.2023
1) 5-2=3 м - ширина
2) P=(5+3)*2=8*2=16 м
4,7(89 оценок)
Открыть все ответы
Ответ:

1.

Уравнение плоскости, проходящей через некоторую точку с координатами (x₀,y₀,z₀), в общем виде записывается так:

A(x-x₀) + B(y-y₀) + C(z-z₀)= 0, где коэффициенты A,B,C - координаты вектора нормали \overline n

Найдём вектор \overline{M_1M_2} = \{1,1,1\}

Вектор нормали \overline n найдём из векторного произведения векторов a и M₁M₂

\overline{n} =[\overline{a}~\times~\overline{M_1M_2}] = \begin{vmatrix} \overline i & \overline j & \overline k \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \overline i - \overline k = \{1, 0, -1\}

Плоскость задаётся уравнением:

(x - 2) + 0(y - 2) - (z - 1) = 0

ответ: x - z - 1 = 0

2.

Чтобы записать уравнение прямой в каноническом и параметрическом виде необходимо найти направляющий вектор этой прямой и точку, через которую эта прямая проходит

Найдём координаты точки A, которая принадлежит прямой

Пусть z = 0

Решим систему: \left \{\begin{array}{lcl} {{4x + 3y=-1} \\ {4x+2y=-2}}\end{array} \right. \Leftrightarrow ~~\left \{\begin{array}{lcl} {{y=1} \\ {x=-1}}\end{array} \right.

Координаты точки A(-1, 1, 0)

Найдём координаты точки B, которая принадлежит прямой

Пусть z = -4

Снова решим систему: \left \{\begin{array}{lcl} {{4x + 3y=15} \\ {4x+2y=10}}\end{array} \right. \Leftrightarrow ~~\left \{\begin{array}{lcl} {{y=5} \\ {x=0}}\end{array} \right.

Координаты точки B(0, 5, -4)

Найдём направляющий вектор прямой\overline{AB} = \{0 - (-1), 5 - 1, -4-0\} = \{1,4,-4\}

Запишем уравнение прямой в каноническом виде: \frac{x+1}{1} =\frac{y-1}{4} =\frac{z}{-4}

И в параметрическом виде: \left \{\begin{array}{lcl} {{x=t-1} \\ {y=4t+1} \\ {z = -4t}}\end{array} \right. t \in \mathbb{R}

4,7(77 оценок)
Ответ:
РЕГИНА943
РЕГИНА943
12.04.2023
РЕШЕНИЕ
Рисунок к задаче в приложении.
1. Строим координатную плоскость. Проводим оси координат: горизонтальная - ось абсцисс - ось Х,
вертикальная - ось ординат - ось У.
Выбираем единичный отрезок, например, одна клетка в тетради, или 1 см. Точка пересечения осей обозначается О(0;0).
2. Строим заданные точки - вершины четырехугольника.
Начнём с точки А(-6;2). В скобках два числа. 
Первое - Ах =-6 - влево 6 от точки О - координата по оси абсцисс, по оси Х, по горизонтальной оси.
Второе - Ау = 2 - вверх параллельно оси У. Отмечаем точку А(-6;2).
Аналогично строим остальные точки - B, C и D.
3. ВАЖНО! Вершины четырехугольника обозначаются в порядке расположения букв в латинском алфавите: ABCD,  FGHI,  KLMN  и даже WXYZ. - соединили все вершины отрезками и увидели, что это оказался РОМБ.
4. Вспоминаем формулу площади ромба:
S = 1/2*D*d, - где D и d - диагонали ромба.
5. Вспоминаем теорему Пифагора и самого Пифагора и вычисляем длину диагоналей и площадь фигуры.
Расчет на рисунке в приложении.
ОТВЕТ: Площадь S = 8 ед.²

Найдите площадь четырехугольника abcd ,вершины которого заданы своими координатами : a (-6; 2), b(-5
4,7(84 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ