14^600 = 2^600 * 7^600, поэтому все простые делители сомножителей это 2 и 7.
Чтобы n было наименьшим, у него не должно быть делителей, отличных от 2 и 7 (если это было бы не так, можно было бы выбросить все остальные простые множители и получить меньшее n, у которого можно было бы найти те же три делителя).
Пусть степени двойки, входящие в сомножители, есть a <= b <= c, при этом a + b + c = 600. Тогда c >= 200 (если c <= 199, то a + b + c <= 3c <= 597). Значит, n делится на 2^200.
Аналогично, n делится на 7^200. Тогда n >= 2^200 * 7^200.
n = 2^200 * 7^200 не подходит: максимальный сомножитель может быть не больше n, остальные строго меньше n, поэтому произведение строго меньше n^3 = 14^600.
Следующий по возрастанию вариант n = 2^201 * 7^200. Он подходит: тремя делителями можно взять 2^199 * 7^200, 2^200 * 7^200, 2^201 * 7^200.
ответ: 2^201 * 7^200.
ответ:√82
Пошаговое объяснение:
Если поместить центр начала координат в середину гипотенузы и провести ось Y через вершину прямого угла, а ось X вдоль гипотенузы, то вершины треугольника будут иметь координаты (20,0) (-20,0) (0,20), а центр окружности радиуса 9 будет находиться в точке (0, 9). Уравнение стороны и уравнение окружности выглядят так.x+y=20; x^2+(y — 9) ^2=9^2; отсюда y — 9=11 — x; и для точек пересечения получается квадратное уравнение на их координаты x1 и x2; x^2+(11 — x) ^2=9^2; или x^2 — 11*x+20=0; x1=(11+√41) /2; x2=(11 — √41) /2; Расстояние между точками пересечения стороны и окружности, очевидно, равноd=(x1 — x2)*√2=√82;
потому что все эти числа:1.2.3.4.5.6.7.8.9 они натуральные