cosx=0 одно из решений. х=пи/2+пи*н , где н -любое целое.
Если косинус х не равен 0, то поделим все на sqrt(cos(x)) (помня ОДЗ : косинус больше 0)
sin(x)*sqrt(cos(x))=sqrt(3)/2
Возведем в квадрат
(1-cos^2(x))*cos(x)=3/4
Обозначим косинус за у
у-y^3=3/4
y^3-y+3/4=0
Можно показать, что у этого уравнения один действительный корень и он меньше -1.(для этого надо построить график, изучить экстремумы и локализовать корень, если не пользоватья формулами Кардано).
Поэтому, ответ : х=пи/2+пи*н , где н -любое целое.
Посмотрите предложенный вариант (третья задача ввиду простоты не решалась через интеграл): 1. y'(1)= -1/2; 2. f(x)=2x³+3x²-36x; f'(x)=6x²+6x-36; ⇒ x²+x-6=0; ⇒x= -3; x=2.Критические точки находятся за пределами отрезка [-2;1], поэтому считаются значения только на концах отрезка: f(-2)=68 - max; f(1)= -31 - min 3. y=x+3; y=-x+1; y=0. Образованная фигура - равнобедренный треугольник, у которого основание (участок оси Ох от -3 до 1) равно 4, а высота равна 2 (до вершины, которая получается при пересечении двух прямых). Тогда S=1/2 * 4* 2= 4ед.²
х=пи/2+пи*н , где н -любое целое.
Пошаговое объяснение:
sin2x=2sinx*cosx
cosx=0 одно из решений. х=пи/2+пи*н , где н -любое целое.
Если косинус х не равен 0, то поделим все на sqrt(cos(x)) (помня ОДЗ : косинус больше 0)
sin(x)*sqrt(cos(x))=sqrt(3)/2
Возведем в квадрат
(1-cos^2(x))*cos(x)=3/4
Обозначим косинус за у
у-y^3=3/4
y^3-y+3/4=0
Можно показать, что у этого уравнения один действительный корень и он меньше -1.(для этого надо построить график, изучить экстремумы и локализовать корень, если не пользоватья формулами Кардано).
Поэтому, ответ : х=пи/2+пи*н , где н -любое целое.