Вычислить площадь фигуры ограниченной линиями
1) y =2,y=3x-x^2
Ищем пределы интегрирования:
3x-x² = 2
х² -3х +2 = 0
х = 1 и 2 ( по т. Виета)
S =₁∫²(3x-x^2 -2) dx = (3x²/2 -x³/3 -2x)|₁² = 6 - 8/3 - 4 - 3/2 +1/3 +2 =
=2,5 -7/3 = 2,5 - 2 1/3 = 1/6
2)y=-x^2+6x, y=0
Ищем пределы интегрирования:
-х² +6х = 0
х =0 и х = 6
S = ₀∫⁶ (-x² + 6x)dx = (-x³/3 +3х²)|₀⁶ = 36
3)y=-2sin x, y=sin x, 0 ≤ х ≤ п/3
Ищем пределы интегрирования:
-2Sinx= Sinx
-3Sinx = 0
Sinx = 0
₀∫π/3 Sinxdx = -Cosx|₀π/3 = -Cosπ/3 + Сos0 = -1/2 + 1 = 1/2
I рабочий за 6 часов = 132 деталей
II рабочий за 8 часов = 152 детали.
Тогда:
1) 132:6 = 22 (д) - изготавливает 1 рабочий за один час.
2) 152:8= 19 (д) - изготавливает 2 рабочий за один час.
3) 22+19 = 41 (д) - изготавливают рабочие.
4) 164:41 = 4 (час) - изготовят рабочие, работая сообща.
ответ: 4 часа понадобится, чтобы создать слаженными усилиями детали.