I этап. Составление математической модели. Пусть цена мяча х руб. Тогда у Саши было (х-50) руб., у Миши (х-60) руб. Общая сумма имеющихся денег у мальчиков: (х-50) + (х-60) Зная , что после покупки мяча, у мальчиков осталось 40 рублей, составим уравнение. х = (х-50) +(х-60) -40
II этап. Работа с математической моделью. Т.е. решение уравнения. х = х-50+х-60-40 х=2х-150 х-2х=-150 -х=-150 х=150
III этап. Оценка результата. Если 150 руб. стоил мяч , то у Саши было (150-50) =100 руб. , а у Миши (150-60) = 90 руб. , после покупки мяча у них осталось (100+90)-150 = 40 руб. ответ удовлетворяет всем условиям задачи.
Х учеников, у скамеек. Тогда: (составляем два уравнения) 1. Уравнение для числа учеников. По два ученика на каждой скамейке и ещё семеро стоят, вместе получается общее число учеников. 2*х + 7 = у. 2. Уравнение для числа скамеек. Все ученики расселись по трое на скамейку, и ещё пять скамеек осталось. у / 3 + 5 = х 3. Решаем систему уравнений. Вместо "у" во втором уравнении записываем выражение из первого уравнения и приводим к общему знаменателю. Получаем: 2х + 7 + 15 = 3х. Решаем: х = 22 - это число скамеек. 4. Подставляем найденный результат в первое уравнение и получаем у = 2*22+7 = 51 - это число учеников.
1
Пошаговое объяснение:
2|3х+3|=13+5
2|3х+3|=18
|3х+3|=18:2
|3х+3|=9
3х=9-3
3х=3
х=3/3
х=1