Определение. любое натуральное число, на которое делится (без остатка) данное натуральное число, называется делителем данного числа. любое натуральное число, которое делится (без остатка) на данное натуральное число, называется кратным данному числу. всякое натуральное число кратно нескольким натуральным числам, самому себе и 1 или только самому себе и 1. например: число 64 кратно числам: 2, 4, 8, 16, 32, 64 и 1. следовательно, число 64 можно записать как произведение двух или более его множителей: 2 * 32 = 64 2 * 4 * 8 = 64 4 * 16 = 64 1 * 64 = 64 число 162 кратно числам: 2. 3, 6, 9, 18, 27, 54, 81, 162, 1. следовательно, число 162 можно записать как произведение двух или больше его множителей: 2 * 81 = 162 2 * 3 * 27 = 162 3 * 54 = 162 3 * 6 * 9 = 162 6 * 27 = 162 1 * 162 = 162 9 * 18 = 162 число 37 кратно числам 37 и 1. следовательно, число 37 можно записать как произведение только двух множителей: 37 * 1 = 37 число 0 (нуль) занимает особое место в разделе чисел. нет числа, которое делилось бы на нуль, так как множитель нуль в составе произведения превращает произведение в нуль. правило. нуль не относится к натуральным числам. на нуль делить нельзя.
Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508