М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ксюха280
ксюха280
21.02.2020 13:24 •  Математика

В каком виде записывается деление с остатком числа a на число !

👇
Ответ:
yhjk
yhjk
21.02.2020

положительное, примеры

Правило деления с остатком целых отрицательных чисел, примеры

Проверка результата деления целых чисел с остатком

Статья разбирает понятие деления целых чисел с остатком. Докажем теорему о делимости целых чисел с остатком и просмотрим связи между делимыми и делителями, неполными частными и остатками. Рассмотрим правила, когда производится деление целых чисел с остатками, рассмотрев подробно на примерах. В конце решения выполним проверку.

Общее представление о делении целых чисел с остатками

Деление целых чисел с остатком рассматривается как обобщенное деление с остатком натуральных чисел. Это выполняется потому, что натуральные числа – это составная часть целых.

Деление с остатком произвольного числа говорит о том, что целое число a делится на число b, отличное от нуля. Если b=0, тогда не производят деление с остатком.

Также как и деление натуральных чисел с остатком, производится деление целых чисел a и b, при b отличном от нуля, на c и d. В этом случае a и b называют делимым и делителем, а d – остатком деления, с – целое число или неполное частное.

4,8(27 оценок)
Открыть все ответы
Ответ:
muraitovaayana2
muraitovaayana2
21.02.2020

Теорема Безу

Остаток от деления многочлена f(x) на двучлен (x - a) равен f(a)

Доказательство

f(x) = (x - a)·g(x) + r, где g(x) - частное, имеет степень на 1 меньше, чем f(x), а r - число (многочлен степени 0)

Тогда, подставляя x = a получаем:

f(a) = (a - a)·g(a) + r, то есть получаем f(a) = r, или r = f(a) - что и требовалось.

Теорема 2

x = a - корень f(x) ⇔ f(x) делится на (x - a)

Доказательство

из теоремы Безу получаем, что если f(a) = 0 (то есть a - корень f(x)) ⇒ f(x) = (x - a)·g(x) + 0 ⇒ f(x) при делении на (x - a) дает g(x) при 0-м остатке, а значит делится (x - a)

Обратно: раз f(x) делится на (x - a), значит остаток равен 0, а он по теореме Безу равен f(a), то есть a - корень f(x)

4,4(82 оценок)
Ответ:
WDGa5ter
WDGa5ter
21.02.2020

ответ: (2, -1, 1)

Пошаговое объяснение: Запишем систему уравнений в матричном виде.

\left[\begin{array}{cccc}3&-1&2&9\\2&3&-1&0\\2&4&3&3\end{array}\right]

Приведем к ступенчатому виду. Применяем операцию R_1=\frac{1}{3} R_1 к R_1 (к 1 строке) для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_2=-2\times R_1+R_2 к R_2 (ко 2 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_3=-2\times R_1+R_3 к R_3 (к 3 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&\frac{11}{3} &-\frac{7}{3}&-6 \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_2=\frac{3}{11}R_2 к R_2 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&1&-\frac{7}{11} &-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_1=\frac{1}{3} R_2+R_1 к R_1 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_3=-\frac{14}{3} R_2+R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&\frac{51}{11} &\frac{51}{11} \end{array}\right]

Применяем операцию R_3=\frac{11}{51} R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_1=-\frac{5}{11}R_3+R_1 к R_1 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&0&2 \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_2=\frac{7}{11}R_3+R_2 к R_2 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&0&2\\0&1&0&-1\\0&0&1&1\end{array}\right]

Воспользуемся полученной матрицей для того, чтобы описать итоговое решение системы уравнений.

x=2

y=-1

z=1

Решением является множество упорядоченных пар, которые удовлетворяют системе.

(2, -1, 1)

4,4(75 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ