Обозначим их числами от 1 до 14. Выпишем составы партий: (1,2,3);(1,2,4);(3,4,5);(5,6,7);(6,7,8);(8,9,10);(9,10,11);(11,12,13);(12,13,14) Как я построил этот список? Взял две первые тройки, (1,2,3);(1,2,4). Жители 1 и 2 уже состоят в 2 партиях каждый, больше они не могут быть ни в одной партии. Следующую партию берем (3,4,5). Теперь жители 3 и 4 каждый в двух партиях, а 5 пока в одной. (5,6,7);(6,7,8) Теперь 5, 6 и 7 - каждый в 2 партиях, и появился житель 8. (8,9,10);(9,10,11) Теперь 8, 9 и 10 - каждый в 2 партиях, и появился житель 11. (11,12,13);(12,13,14) Теперь 11, 12 и 13 - каждый в 2 партиях, и только 14 в одной. Больше жителей нет, поэтому дальше продолжить нельзя. Получилось 9 партий.
Можно построить список по другому принципу: (1,2,3);(1,4,5);(2,4,6);(3,5,6);(7,8,9);(7,10,11);(8,10,12);(9,11,13);(12,13,14) Но в результате все равно получилось 9 партий. Все жители входят в две партии, только 14 в одну.
Обозначим все числа, начиная с того, что стоит в верхнем кружкке, по часовой стрелке, как и Число, которое стоит в центре обозначим, как
Равенство всех пяти сумм чисел, стоящих в вершинах треугольников, выражается уравнениями:
Заметим, что во всех суммах, помимо прочих (что можно легко понять и просто из рисунка) присутствует одно и то же число
Так что это число может быть совершенно произвольным: простым, натуральным, целым, дробным, иррациональным, да хоть комплексным... Это ничего не изменит, поскольку данное число входит во все суммы в единичном экземпляре.
Вычеркнем из вышеозначенных уравнений проанализированное число и рассмотрим уравнения в упрощённом варианте:
Из первого равенста следует, что:
Из третьего равенста следует, что:
Поскольку: то:
Из второго равенста следует, что:
Таким образом, все «вершинные» числа должны быть равны между собой, а центральное при этом может быть каким угодно.
Значит на рисунке может оказаться одно или два различных числа. Максимум : 2 .
Б Подумай сам вот так я решил