Понять, что такое круги Эйлера, можно, решив несколько задач. Каждый круг Эйлера обозначает множество объектов (то есть набор каких-либо объектов, заданный так, что про вообще любой объект можно однозначно определить, есть он в этом наборе, или нет), а точка — один объект. Точка рисуется внутри круга, если объект принадлежит этому множеству, а иначе — снаружи круга.
В случае, если объект принадлежит сразу нескольким множествам (то есть лежит в пересечении множеств), обозначающая его точка находится в пересечении соответствующих этим множествам кругов (то есть в каждом из них).
Если объект принадлежит хотя бы одному из нескольких множеств, то говорят, что он принадлежит их объединению. Применительно к кругам Эйлера это означает, что точка лежит хотя бы в одном из кругов, соответствующих этим множествам.
Объект лежит в разности двух множеств, если он лежит в первом из них, но не лежит во втором.
Чтобы не рисовать точки, часто просто пишут их количество в соответствующих частях кругов.
V реки=5км/ч, плот только 25 км, значит, он затратил по времени 25/5 = 5 (часов) Х км/ч - скорость лодки, тогда cкорость лодки по течению (Х-5) км/ч, а против течения (Х+5) км/ч Лодка по течению 48/(Х-5) часов, а против течения 48/(Х+5) часов, но т.к. она затратила на проплыв 1 час меньше, чем плот, то получаем: 48 +48 = 5 - 1 Х-5 Х+5 48*(Х+5) + 48*(Х-5) = 4*(Х-5)(Х+5) 48*(Х+5+Х-5) = 4*(Х²-25) 48*2Х = 4Х² - 100 4Х² - 96Х – 100 = 0 Х² - 24Х – 25=0 Д= (-24) ² - 4*1*(-25) = 576 + 100 = 676 Х1 = -(-24)+√676 = 24+26 = 50 = 25 (км/ч) 2*1 2 2 Х2 = -(-24)-√676 = 24-26 = -2 = -1 2*1 2 2 ответ: скорость моторной лодки в неподвижной воде = 25 км/ч
63, потому что 296:4=74 и 74-11=63