Очень вместительная доска На доске написаны числа, среди которых есть различные.
Известно, что для каждого из написанных чисел на доске найдутся 1527 других написанных чисел, среднее арифметическое которых равно этому числу. Какое минимальное количество чисел могло быть написано на доске?
Имеем неопределённость оо - оо (бесконечность минус бесконечность). Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1). Получим такое выражение: [sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем: [(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе производим упрощения: (sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2 Знаменатель вновь без изменений. После этого исходное выражение выглядит так: 2/(sqrt(x^2+1) + sqrt(x^2-1)) Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой. Наконец, нам осталось разделить 2 на оо, а это будет нуль. ответ: lim = 0
№1 Для решения данного задания, вспомним, чтобы найти какую часть составляет число А от числа Б, нужно число А разделить на число Б. Вычислим, какую часть всех машин составляют машины иностранной марки, если машин всего - а, а иностранных марок - 7. 7/а машин. ответ: 7/а машин. №2 В/32 составляет часть девочек. №3 t - самостоятельная работа 3мин - проверка (t+3):45=(t+3)/45 №4
ответ:1528
Пошаговое объяснение:
Я написал так, показано, что правильно