Пошаговое объяснение:
В виде десятичных дробей можно записать те обыкновенные дроби, которые можно привести к знаменателю равному 10 или 100. Таким образом, чтобы из обыкновенной дроби получилась десятичная, знаменатель этой дроби должен быть одним из делителей чисел 10 или 100.
3/5: 5 — делитель чисел 10 и 100 (10/5 = 2), тогда 3/5 = 3/5 * 2/2 = 6/10 = 0,6.
5/12: 12 — не делитель чисел 10 или 100.
2/9: 9 — не делитель чисел 10 или 100.
7/20: 20 — делитель числа 100 (100/20 = 5), тогда 7/20 = 7/20 * 5/5 = 35/100 = 0,35.
6/25: 25 — делитель числа 100 (100/25 = 4), тогда 6/25 = 6/25 * 4/4 = 24/100 = 0,24.
8/15: 15 — не делитель чисел 10 или 100.
3/4: 4 делитель числа 100 (100/4 = 25), тогда 3/4 = 3/4 * 25/25 = 75/100 = 0,75.
5/7: 7 — не делитель чисел 10 или 100.
ответ: 3/5, 7/20, 6/25, 3/4
Из них хоть одну четверку содержат:
1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта.
2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта.
3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант.
4) 4 A 4 (A ≠ 4) - 9 вариантов
5) A 4 4 (A ≠ 0 и 4) - 8 вариантов
6) 4 4 A - 10 вариантов
По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта.
p = 252 / 900 = 0,28