Чтобы разделить отрезок на 2 равные части, нужно: 1)начертить отрезок МР 2)циркулем начертить окружность с центром в т.М радиусом, несколько бОльшим, чем предполагаемая середина отрезка 3)не изменяя расстояние циркуля,начертить окружность с центром в т.Р 4)окружности пересекутся в 2 точках. 5)через эти точки провести прямую-она разделит отрезок МР ровно пополам. Обозначим эту точку пересечения прямой и отрезка МР как точку А. разделить отрезок АР пополам по той же схеме, повторив шаги 1)-5). обозначим середину отрезка АР точкой В
разведем "ножки" циркуля на расстояние, равное отрезку МВ и "перенесем" это расстояние на числовой луч, выбрав за исходную точку начало луча-точку О. вторая "ножка" циркуля отложит на луче расстояние, равное МВ. поставим на луче в этом месте точку К расстояние ОК=МВ=3/4МР
Дано:
L=8 см
∠β = 30°
Найти:
V=?
S=?
Обычно, в треугольной пирамиде проекция бокового ребра на основание равна две третьих высоты. (2/3)*h (это высота основания пирамиды).
1) (2/3)*h=8*cos 30°=8√3/2=4√3 см
2) Высота основания h=(3/2)*4√3=6√3 см
3) а=h/cos 30°=6√3/(√3/2)=12 см (Сторона основания)
4) Н= L*sin 30°=8*(1/2)=4 см (Высота пирамиды)
5) А=√(Н² + (h/3)²)=√(16 + (6√3/3)²)=√(16 + 12)=√28=2√7≈5,292 см (Апофема "А" боковой грани)
6) S1=a²√3/4=12²√3/4=36√3≈62,3538 см² (Площадь основания)
7) S2=(1/2)РА=(1/2)*(3*12)*(2√7)=36√7 ≈ 95,25 см². (Площадь боковой поверхности)
8) S=S1+S2=62,3538+95,247=157,6008 см² (Вся поверхность)
9) V=(1/3)SoH=(1/3)*62,3538*4=83,1384 см³
ответ: S=157,6008 см², V=83,1384 см³.