М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MorEnSo
MorEnSo
02.10.2022 08:24 •  Математика

Найдите функцию f(x) для которойF(x)=tg4x является первообразной на | -\frac{n}{8} ; \frac{n}{8} |
​​

👇
Ответ:
daridolgova
daridolgova
02.10.2022
Для того чтобы найти функцию f(x), для которой F(x) = tan(4x) является первообразной на интервале (| -n/8, n/8 |), где n - произвольное положительное число, мы должны найти антипроизводную или интеграл от F(x).

Для этого, мы можем воспользоваться формулой интегрирования для функции тангенса:
∫ tan(x) dx = ln|sec(x)| + C, где C - постоянная интегрирования.

Используя эту формулу, мы можем интегрировать функцию F(x) = tan(4x):
∫ tan(4x) dx = 1/4 * ∫ tan(u) du, где u = 4x.

Заменяем переменную, получаем:
1/4 * ∫ tan(u) du = 1/4 * ln|sec(u)| + C.

Теперь, чтобы найти f(x), нам нужно заменить переменную обратно:
f(x) = 1/4 * ln|sec(4x)| + C.

Таким образом, функция f(x), для которой F(x) = tan(4x) является первообразной на (| -n/8, n/8 |), где n - произвольное положительное число, равна f(x) = 1/4 * ln|sec(4x)| + C, где C - произвольная постоянная интегрирования.
4,8(69 оценок)
Проверить ответ в нейросети
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ