Трапеция равнобедренная - рассмотрим левую половину. Из вершинs D опускаем перпендикуляр DE и получаем прямоугольный Δ ADE. Так как ∠EAD=45°, то и ∠ADE=45° (или 180-90-45 = 45). Треугольник равнобедренный. Катет АЕ вычислим по формуле AE = (AB-CD)/2 = (17-5)2 = 6. Высота трапеции h = DE=AE = 6. Площадь трапеции по формуле через среднюю линию и высоту. S = (a+b)/2 *h = (17+5)/2 *6 = 11*6 = 66 - ОТВЕТ Также можно вычислить через площади боковых треугольников и прямоугольника в центре. S = 2* (6*6)/2 + 5*6 = 36+30 = 66 - ОТВЕТ тот же.
На доске остались все числа вида 100х+10у+z, где (х,у,z) - всевозможные упорядоченные тройки различных цифр от 0 до 9. Среди цифр от 0 до 9 можно выбрать три различных цифры С Любую такую непорядоченную тройку различных цифр х, у, z можно упорядочить 6 различными и получить 6 различных чисел: 100х+10у+z 100х+10z+y 100y+10x+z 100y+10z+x 100z+10x+y 100z+10у+x Сумма этих чисел равна 2(х+у+z)(100+10+1)=37*6*(x+у+z), т.е. делится на 37. Поскольку это верно для любой (неупорядоченной) тройки различных цифр, то и вся сумма делится на 37.
Из вершинs D опускаем перпендикуляр DE и получаем прямоугольный Δ ADE.
Так как ∠EAD=45°, то и ∠ADE=45° (или 180-90-45 = 45).
Треугольник равнобедренный.
Катет АЕ вычислим по формуле
AE = (AB-CD)/2 = (17-5)2 = 6.
Высота трапеции h = DE=AE = 6.
Площадь трапеции по формуле через среднюю линию и высоту.
S = (a+b)/2 *h = (17+5)/2 *6 = 11*6 = 66 - ОТВЕТ
Также можно вычислить через площади боковых треугольников и прямоугольника в центре.
S = 2* (6*6)/2 + 5*6 = 36+30 = 66 - ОТВЕТ тот же.