До 6 октября 1927 года называлась Симоновской (Семёновской), происхождение старого названия доподлинно неизвестно, скорее всего по имени одного из домовладельцев. Переименована по большому количеству находившихся (в то время) на ней ссузов — приборостроительного техникума, профессионального училища № 18 и некоторых других.
Улица находится в южной части Кировского района, идет параллельно улицам Нахимова и Усова с запада на восток. Проспектом Ленина улица разделена на две части: западная часть, идущая к реке, отличается значительным уклоном. Восточная часть ровная. Длина улицы 2 км, она начинается в исторической части Томска Заисточье — от Московского тракта, идёт на восток, пересекает проспект Ленина, улицы Советскую, Кулёва, Белинского, Вершинина, Котовского и заканчивается, пересекаясь с улицей Красноармейской в районе Дворца зрелищ и спорта
Пусть сначала было X апельсинов. Тогда по условию число X можно представить в виде:
X = 8·n + 2 или X - 1 = 7·k,
где n и k частные при делении (натуральные числа).
Апельсинов было всего меньше 100. Тогда
8·n + 2 < 100
8·n < 98
n < 12,25.
Выражение X - 1 = 7·k равносильно к X = 7·k + 1. Приравниваем выражения для X:
8·n + 2 = 7·k + 1
8·(n + 1) - 6 = 7·(k + 1) - 6
8·(n + 1) = 7·(k + 1)
Так как 8 и 7 взаимно простые число, то отсюда следует, что (n + 1) кратно 7. Отсюда n = 6, 13, Но из-за ограничения n < 12,25 получим единственное значение n = 6 и значение Х:
X = 8·6 + 2 = 48 + 2 =50.
Пошаговое объяснение: