Цилиндр - это фигура вращения, которая получается вращением прямоугольника вокруг оси, проходящей через середины боковых сторон.
Площадь полной поверхности - это 2 основания, которые являются окружностями ( одиниковыми) и площадь развертки (прямоугольника, стороны которого: длина окружности основания и высота цилиндра).
Получаем:
площадь оснований: 2*пR2, где R2 - это радиус в квадрате.
площадь развертки: 2пR*h, где h -высота цилиндра
Складываем: 2п(R2+Rh) - площадь полной поверхности цилиндра.
2.
Образующая конуса - это отрезок, соединяющий вершину с точкой окружности (основания). Так как сечением является равнобедренный треугольник (равные стороны - это образующие) с углом в 60* при вершине.
Получаем, что так как угол при вершине = 60*, то треугольник равносторонний ( все стороны равны и все углы равны 60*) Площадь р/ст треугольника а* (3(корня из 3)/4).
Нам известна высота = 6. Из треугольника, образованного обдой из образующих и высотой ( он прямоугольный) находим чему равна образующая: а= 4 (корня из 3) см.
Подставляем в формулу площади:
4(корня из 3)*3(корня из 3) / 4 = 9 кв см.
3.
R - радиус, значит 2R - диаметр шара и он = диагонали куба, впис в этот шар.
По теореме Пифагора, примененной к сторонам квадрата и его диагонали, получаем, что 2а2=2R, откуда а2=R. Площадь поверхности куба = 6* а2 = 6*R.
Обозначим за (х) -скорость движения реки в стоячей воде, а скорость реки
за( у), тогда
скорость корабля по течению реки равна: (х+у)
а скорость корабля против течения реки равна: (х-у)
Согласно условия задачи составим систему уравнений:
24 /(х+у) = 2
24(х-у)=3
24=2*(х+у)
24=3*(х-у)
24=2х+2у
24=3х-3у
Из первого уравнения найдём х, но прежде первое уравнение, его левую и правую часть сократим на 2:
12=х+у
х=12-у
Подставим данное х во второе уравнение:
24=3*(12-у)-3у
24=36-3у-3у
-6у=24-36
-6у=-12
у=-12: -6=2 (км/час-скорость реки)
х=12-2=10-(км/час -скорость корабля в стоячей воде
ответ: Скорость корабля в стоячей воде 10км/час; скорость реки-2км/час