I. (2sin²x - 7sinx + 3) · log₂ (x-8) = 0
ОДЗ : x-8 > 0; x > 8
Произведение равно нулю, когда один из множителей равен нулю.
1) 2sin²x - 7sinx + 3 = 0 - квадратное уравнение с неизвестным sinx
D = 7² - 4·2·3 = 25 = 5²
sin x = (7+5)/4 = 3 - не подходит под условие |sin x| ≤ 1
sin x = (7-5)/4 = 1/2
x₁ = π/6 + 2πn, n∈N, n≥2 ( ОДЗ: π/6 + 4π ≈ 13,1 > 8)
x₂ = 5π/6 + 2πk, k∈N ( ОДЗ: 5π/6 + 2π ≈ 8,9 > 8)
2) log₂ (x-8) = 0 ⇒ x - 8 = 2⁰
x = 1 + 8; x₃ = 9
==========================
II. x ∈ (3π; 6π)
3) x₃ = 9 < 9,4 ≈ 3π - не входит в интервал
ответ: ;
1. Раскроем скобки и приведем подобные слагаемые:
a) (2a2 – 3a + 1) – (7a2 – 5a) = 2a2 – 3a + 1 – 7a2 + 5a = - 5a2 + 2a + 1.
б) 3x * (4x2 – x) = 12х3 - 3х2.
№2. Раскроем скобки и приведем подобные слагаемые:
а) 7 – 4 (3x – 1) = 5 (1 – 2x),
7 – 12x + 4 = 5 – 10x,
- 12х + 10х = 5 - 7 - 4,
- 2х = - 6х,
х = 3.
б) (х - 1) / 5 = (5 – x) / 2 + 3x / 4.
Умножим обе части уравнения на общий множитель 20.
4 * (х - 1) = 10 * (5 – x) + 5 * 3x,
4х - 4 = 50 - 10х + 15х,
4х - 4 = 50 + 5х,
4х - 5х = 50 + 4,
- х = 54,
х = - 54.