АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
Каждая сторона треугольника меньше суммы двух других сторон. ( Доказательство можете посмотреть в учебнике или найти в сети.)
Следовательно, третья сторона не может быть равна или больше 7+16, т.е. она меньше 23 см.
Но она не может быть меньше разности двух других сторон ( 16-7), так как в противном случае сторона длиной 16 см будет больше суммы длин третьей и первой стороны.
Т.е. третья сторона больше 9 см
Итак, 9 см < 3-я сторона< 23 см