5 Не производя вычислений, определи, сколько цифр по- лучится в частном. 35 280:7 623 801 : 89 376 423:47 450 340 : 506 Проверь, выполнив действия с проверкой и столбиком фото дам лучший ответ
Да,можно назвать т.к ребёнок родился слепым. Страшное несчастье, самое страшное, какое только может быть. И так как его слепота неизлечима, Пётр Попельский, казалось, обречён на несчастную жизнь.«Моя жизнь наполнена одной слепотой, - говорит он. - Никто не виноват, но я несчастнее всякого нищего» . Он стал злым и раздражительным эгоистом. «Та самая рука, которая лишила меня зрения, когда я ещё не родился, и вжила в меня эту злобу… » Физическая слепота соединилась со слепотой духовной, когда человек ничего не видит и не хочет видеть, кроме себя.Но Пётр прозрел. Он не стал зрячим, но перестал чувствовать себя несчастным. Этому дядя Максим, старый боец, знавший, что настоящая жизнь не прозябание, не спокойствие, а труд и борьба. «Он мечтал для Петра не о спокойствии, а о возможной полноте жизни» . Полнота жизни лишь в единении с людьми. И Максим посылает в путешествие с нищими слепцами. «Я хотел, чтобы ты чувствовал чужое горе и перестал так носиться со своим…» . И Пётр «узнал горе, слепое и зрячее, от которого не раз больно сжималось сердце… Глаза его становились по-прежнему чистыми и по-прежнему незрячими. Но душа, несомненно, исцелилась» . Исцелённая душа открыла слепому музыканту глубину «жизненной правды, сделала его музыкальный талант нужным людям. «И каждое сердце дрожало, как будто он касался его своими быстро бегущими руками» . Такова эта повесть о слепом музыканте, поучительная для каждого. Счастье п преодолении эгоизма, в любви к людям, в труде и творчестве на общее благо.
Даны точки А(-4; -7); В(4; 4); С(8; -8).
Знайти:
а) периметр трикутника.
Находим длины сторон по разности координат.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
8 11 4 -12 12 -1.
Длины сторон АВ (с) = √(64 + 121) = √185 ≈ 13,60147051,
BC (а) = √(16 + 144) = √160 ≈ 12,64911064,
AC (b) = √(144 + 1) = √145 ≈ 12,04159458.
Периметр Р = 38,29217573.
б) рівняння бісектриси проведеної з т.А.
Находим координаты основания биссектрисы АА3 по её свойству - делить противоположную сторону в отношении прилегающих сторон.
Основание биссектрисы
λ(A) = 1,129540645 A3 = 6,121660646 -2,364981938.
Находим вектор АА3.
Вектор биссектрисы АА3.
x y Длина
AA3 10,12166065 4,635018062 11,13244837.
Уравнение биссектрисы АА3 каноническое
АA3: x + 4 = y + 7
10,12166065 4,635018062.
Уравнение биссектрисы АА3 общего вида
-4,635018062 x + 10,12166065 y + 52,31155227 = 0.
Уравнение биссектрисы АА3 с угловым коэффициентом
AA3: y = 0,457930593 x + -5,168277628.
в) рівняння медіани проведеної з т.В.
Находим координаты точки М (это основание медианы из точки В) как середины стороны АС.
М = (А(-4;-7) + С(8; -8))/2 = (2; -7,5).
Вектор ВМ = М(2; -7,5) - В(4; 4) = (-2; -11,5).
Находим уравнения медианы ВМ:
BМ: x - 4 = y - 4
-2 -11,5
-11,5x + 2y + 38 = 0,
y = 5,75x - 19.
г) рівняння висоти проведеної з т.С.
Сначала определяем уравнение стороны АВ по найденным координатам вектора АВ(8; 11) и точке А(-4; -7).
(x + 4)/8 = (y + 7)/11.
11x + 44 = 8y + 56. Отсюда получаем общее уравнение АВ.
АВ: 11x - 8y - 12 = 0.
В уравнении перпендикулярной прямой СС2 (это высота из точки С) коэффициенты А и В меняются на -В и А.
8x + 11y + C = 0. Для определения слагаемого С подставим координаты точки С. 8*8 + 11*(-8) + С = 0, отсюда С = 88 - 64 = 24.
Уравнение высоты из точки С:
СС2: 8x + 11y + 24 = 0.
y = -0,72727 x - 2,181818.