ответ:
вот решение:
сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.
так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.
найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.
следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.
построим фигуру, ограниченную линиями:
у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.
гу = 2х2 – 2х + 1 – парабола. точки пересечения с осями координат: а(0; 1) – с осью оу; с осью ох – нет точек пересечения, т.к. уравнение 2х2 – 2х + 1 = 0 не имеет решений (d < 0). найдем вершину параболы:
xb = -b/2a;
xb = 2/4 = 1/2;
yb = 1/2, то есть вершина параболы точка в имеет координаты в(1/2; 1/2).
итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.
имеем: sоaвd = soabc – sadbc.
найдем координаты точки d из условия:
6х – 7 = 0, т.е. х = 7/6, значит dc = 2 – 7/6 = 5/6.
площадь треугольника dbc найдем по формуле sadbc = 1/2 · dc · bc. таким образом,
sadbc = 1/2 · 5/6 · 5 = 25/12 кв. ед.
далее:
soabc = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв.
окончательно получим: sоaвd = soabc – sadbc = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).
ответ: s = 1 1/4 кв. ед.
ответить
Т.к.BD:CD=1:2(т.к.биссектриса), AB:AC=1:2, BK- медиана, то (.) K делит АС пополам, то AB=AK, то треугольник KAB- равнобедренный и его биссектриса AE является ещё и медианой.=> BE=EK.По свойству медианы это значит,что S треугольников ABE и AEK равны и S ABK и BKC равны.Т.к. AD - биссектриса, делящая BC в отношении 1:2, то S ABD относится к S ADC так же как и 1:2.Т.к. S ABC=60,то S треугольников ABK и BKC=30(каждый треугольник), а ABD и ADC равны 20 и 40.
Пусть х- S искомого четырехугольника,тогда S BED= 30-х,S ABE= S ABD - S BED = 20-(30-х) = х-10, но S AEK такая же, так как они равны с BED.Но S ADC = 40 = S AEK + S EDCK = x-10+x=2x-10 =40. х = 25.
ответ: S EDCK=25.
1)6-36
8-64
3-9
2)4-64
7-343
5-125