М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
01lina10
01lina10
01.01.2022 06:15 •  Математика

спростити вираз:5(-1,4а+3)-(1-2,5а)-4(0,8а+3),якщо а=5/7

👇
Ответ:
pashkevich00
pashkevich00
01.01.2022

-3,5

Пошаговое объяснение:

5(-1,4a+3)-(1-2,5)-4(0,8a+3) = -7a+15-1+2,5a-3,2a-12 = -7,7a+2

Если а=5/7, то -7,7а+2 = -77/10 × 5/7 +2 = -11/2 +2 = -5,5+2 = -3,5

Надеюсь понятно объяснил :">

4,8(79 оценок)
Открыть все ответы
Ответ:
женя1084
женя1084
01.01.2022
Математика зародилась и активно развивалась у Древних Шумеров в междуречье, на месте будущей Персии и современного Ирака, одной из самой древнейшей из известных антропологам Цивилизаций вместе с Анатолийскими и Шумерскими языками, которые позже породили все европейские языки.

Примерно 6 000 лет назад (4 000 лет до Нашей Эры) шумеры уже использовали натуральные числа (1,2,3,4,5,6...) и действие сложения.

Позже стало использоваться и действие вычитания, как обратное сложению. Правда, у Шумеров не использовалось вычитание больших чисел из маленьких. Операция 3–7 считалась бессмысленной, поскольку не приводила ни к какому натуральному результату.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) в обиход стали входить действие умножения и деления. Эти действия, как и ранее, производились только над натуральными числами.

Не найдено никаких доказательств того, что у Шумеров была какая-то более менее цельная последовательная школа изучения математики. Знания и навыки оперирования арифметическими действиями передавались из уст в уста. Сама математика использовалась в торгово-менных операциях и в наблюдениях за периодичностью смены дней и лет. Ещё не было ни алгебры, ни механики.

Примерно 5 000 лет назад (3 000 лет до Нашей Эры) математические знания распространялись по всему аравийскому полуострову и набирающему силу Древнему Египту.

В Египте математические знания получили систематизацию. В обиход были введены дробные положительные числа. Примерно 3 500 лет назад (1 500 лет до Нашей Эры) появились первые упоминания об отрицательных числах в долговых обязательствах.

Четыре основные арифметические действия были известны, таким образом, уже 3 500–6 000 лет. Однако тогда эти действия обозначались словами, союзами или какими-то местными знаками, у разных народов по-разному.

Сам знак плюс «+» вошёл в обиход во времена раннего Возрождения, примерно в XV–XVI веке после опубликования работ известного математика-систематизатора и логика Франсуа Виета. Тогда же вошёл в употребление из знак тире «–» в качестве знака вычитания.

Знак умножения в виде диагонального креста «х» – использовался в английской математической школе в XV–XVII в.в. и тогда же получил распространение.

Знак умножения в виде точки – использовался в немецкой математической школе в XV–XVII в.в., в частности на нём активно настаивал Лейбниц, как на общепризнанном математическом знаке.

Знак умножение в виде точки долгое время оставался только в высшей алгебре. В арифметике же во всём мире, включая и СССР, до 1940 года использовался знак диагонального креста «х», т.е. 2 умножить на 3 – записывалось, как « 2 х 3 ».

В послевоенные годы в СССР в школах стал активно использоваться знак Лейбница. Трудно сказать, произошло ли это из-за более высокого уровня преподавания математики и более частого обращения преподавателей к работам Лейбница или просто в силу банальной экономии карандашей, но уже в 50-е годы, большинство книг по арифметике для начальных классов, издаваемых в СССР, публиковались со знаком умножения Лейбница в виде точки.

В 60-е годы в средней школе во всех странах Мира постепенно перешли к обозначению умножения знаком Лейбница в виде точки. Исключением осталась Великобритания, в школах которой и по сей день умножение обозначается крестом.

Всё тоже самое можно сказать и о знаке деления. Косая или прямая черта – это английская школа. Двоеточие – это обозначение Лейбница. Позже в XVIII в. в английской школе было введено компромиссное обозначение деления в виде двоеточие с разделительной чертой « ÷ » .
4,8(43 оценок)
Ответ:
vikyliya
vikyliya
01.01.2022
С одной игральной костью дело обстоит до неприличия просто. Напомню, что вероятность находится по формуле P=m/n, где n - число всех равновозможных элементарных исходов эксперимента с подбрасыванием кубика или кости, а m - число тех исходов, которые благоприятствуют событию. Пример 1. Игральная кость брошена один раз. Какова вероятность, что выпало четное число очков? Так как игральная кость представляет собой кубик (еще говорят, правильная игральная кость, то есть кубик сбалансированный, так что выпадает на все грани с одинаковой вероятностью), граней у кубика 6 (с числом очков от 1 до 6, обычно обозначаемых точкам), то и общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 2, 4 или 6 очками (только четные), таких граней m=3. Тогда искомая вероятность равна P=3/6=1/2=0.5. Пример 2. Брошен игральный кубик. Найти вероятность выпадения не менее 5 очков. Рассуждаем также, как и в предыдущем примере. Общее число равновозможных исходов при бросании игрального кубика n=6, а условию "выпало не менее 5 очков", то есть "выпало или 5, или 6 очков" удовлетворяют 2 исхода, m=2. Нужная вероятность равна P=2/6=1/3=0.333. Даже не вижу смысла приводить еще примеры, переходим к двум игральным костям, где все интереснее и сложнее.
4,6(76 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ