Производительность Время Работа
1-й рабочий х деталей в час ? 60 деталей
2-й рабочий (х - 10) деталей в час ? на 3 ч > 60 деталей
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Уравнение:
60/(х-10) - 60/х = 3
60 · х - 60 · (х - 10) = 3 · х · (х -10)
60х - 60х + 600 = 3х² - 30х
3х² - 30х - 600 = 0
Разделим обе части уравнения на 3
х² - 10х - 200 = 0
D = b² - 4ac = (-10)² - 4 · 1 · (-200) = 100 + 800 = 900
√D = √900 = ± 30
х = (-b±√D)/2a
х₁ = (10-30)/(2·1) = -20/2 = -10 (не подходит, так как < 0)
х₂ = (10+30)/(2·1) = 40/2 = 20 (дет/ч) - производительность 1-го рабочего
20 - 10 = 10 (дет/ч) - производительность 2-го рабочего
60 : 20 = 3 (ч) - время работы первого рабочего
60 : 10 = 6 (ч) - время работы второго рабочего
ответ: за 3 часа первый и за 6 часов второй.
ПРЕЖДЕ НАДО ЗНАТЬ ОПРЕДЕЛЕНИЕ МОДУЛЯ ЧИСЛА!
И ПОЛЕЗНО ТАКЖЕ ЗНАТЬ ГЕОМЕТРИЧЕСКУЮ ИНТЕРПРИТАЦИЮ МОДУЛЯ...
1. │3х - 5│< 1 ⇔ -1 <3х - 5< 1 ⇔ -1+5<3x<1+5 ⇔ 4/3<x<6/3
⇔ 4/3<x<2
2. 2│х - 3│- 4 < 0 ⇔ │х - 3│<4/2 ⇔ -2<х - 3<2 ⇔ 3 -2<х <2 +3 ⇔
1<х <5
3. │х - 2│≥ 3⇔ (х - 2≥ 3 или х - 2≤- 3 )⇔ х ≥ 5 или х ≤1
x∈(-∞;1] ∪[5;+∞)
4. │5 - 2х│≥ 1 ⇔ (5 - 2х≥1 или 5 - 2x≤ - 1 ) x≤2 или x≥3
x∈(-∞;2] ∪[3;+∞)
5. 1<│2х - 3│≤ 4 ⇔
│2х - 3│≤ 4 ⇔ -4≤2х - 3≤4 ⇔ -1≤2x≤7 ⇔-1/2≤ x ≤7/2
и
│2х - 3I>1 ⇔( 2х - 3>1 или 2х - 3<-1) ⇔ (x>2 или x<1)
-----------------[-1/2]/////////////////////////////////////////////[7/2]-----------------------------
////////////////////////////////////////////(1)-------------(2)]/////////////////////////////////////////////
x∈[-1/2;1)∪(2;7/2]
6. │х + 3│<│2х - 1│
два решения.
a) рассматриваем каждый модуль, находим x0 : 1) |x+3|=0 x0= - 3
2) |2x-1|=0 x0=1/2
b) отметим знаки , которые принимает значение выражения в модуле:
|x+3| - + +
---------------(-3)-----------------------------------
|2x-1I - - +
------------------------------(1/2)------------------
две точки (-3),(1/2) делят числовую прямую на 3 промежутка
c) рассмотрим системы неравенств, которые получатся если раскрыть модули:
1. если x<-3 , то -(x+3)<-(2x-1) ⇔-x+2x<3+1
и x<4 т.о x<-3
x<-3
2. если -3≤x<1/2 (x+3)<-(2x-1) ⇔ 3x<-1 x<-2/3.
-3≤x<1/2
и
x<-2/3
-3≤x<-2/3
3. если x≥1/2 (x+3)<(2x-1) x>4
x≥1/2
и x>4
x>4
ответ: x∈(-∞;-2/3)∪(4;+∞)
возведем обе части неравенства в квадрат
│х + 3│²<│2х - 1│²
x²+6x+9<4x²-4x+1 3x²-10x-8>0
3x²-10x-8=0 x1=-2/3 x2=4
+ - +
-----------------(-2/3)----------------(4)-------------
x∈(-∞;-2/3)∪(4;+∞)