Пошаговое объяснение:
Дано: а - b різниця катетів, гіпотенуза с.
Побудувати прямокутний трикутник за гіпотенузою та різницею катетів.
Побудова:
1) Будуємо довільну пряму х.
2) Позначаємо на прямій х довільну точку А.
3) Вимірюємо циркулем довжину відрізку а - b.
4) Будуємо дугу з центром в точці А радіусу а - b.
Позначаємо точку перетину прямої х та дуги В.
5) Проводимо через точку В пряму у перпендикулярну прямій а (b ┴ а).
6) Будуємо на продовженні відрізка АВ за точку В бісектрису прямого кута.
7) Вимірюємо циркулем довжину гіпотенузи с.
8) Будуємо коло з центром в точці А радіусу с.
9) Позначаємо точку перетину бісектриси i кола С.
10) Через точку С проводимо CD ┴ AD (D є АВ).
Отже, ∆BDC - прямокутний рівнобедрений.
∟D = 90°; ∟DBC = 45°, BD = DC = b, тоді AD = a - b + b = a.
Звідси маемо ∆ADC прямокутний з катетами a i b та гіпотенузою с.
Пошаговое объяснение:
Дано: а - b різниця катетів, гіпотенуза с.
Побудувати прямокутний трикутник за гіпотенузою та різницею катетів.
Побудова:
1) Будуємо довільну пряму х.
2) Позначаємо на прямій х довільну точку А.
3) Вимірюємо циркулем довжину відрізку а - b.
4) Будуємо дугу з центром в точці А радіусу а - b.
Позначаємо точку перетину прямої х та дуги В.
5) Проводимо через точку В пряму у перпендикулярну прямій а (b ┴ а).
6) Будуємо на продовженні відрізка АВ за точку В бісектрису прямого кута.
7) Вимірюємо циркулем довжину гіпотенузи с.
8) Будуємо коло з центром в точці А радіусу с.
9) Позначаємо точку перетину бісектриси i кола С.
10) Через точку С проводимо CD ┴ AD (D є АВ).
Отже, ∆BDC - прямокутний рівнобедрений.
∟D = 90°; ∟DBC = 45°, BD = DC = b, тоді AD = a - b + b = a.
Звідси маемо ∆ADC прямокутний з катетами a i b та гіпотенузою с.
Пошаговое объяснение:
1) если после слова вираз идет минус:
- 4 (3,6х - 4) - (7 - 2,1х) + 5 (0,3х - 5) = - 14,4х + 16 - 7 + 2,1х + 1,5х - 25 = 10,8х - 16.
При х = 27:
10,8 * 27 - 16 = 275,6
2) если минуса в начале нет:
4 (3,6х - 4) - (7 - 2,1х) + 5 (0,3х - 5) = 14,4х - 16 - 7 + 2,1х + 1,5х - 25 = 18х - 48.
При х = 27:
18 * 27 - 48 = 486 - 48 = 438