М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
madinaseidahmet
madinaseidahmet
03.02.2020 05:46 •  Математика

пожайлуста. За того кто ответит, буду всем богам молится
Правда буду очень благодарна​


пожайлуста. За того кто ответит, буду всем богам молится Правда буду очень благодарна​

👇
Ответ:
marinadm9889
marinadm9889
03.02.2020

1. -2,7×3,04= -8,208

2. 25,578÷6,3= 4,06

3. 4,8÷(-0,03)= -160

2. -0,36×0,28/(-0,15-0,13)× 0,18= =-0,36×0,28/-0,28×0,18

0,28 и -0,28 -сокращаем

-0,36×1/ -1×0,18=-0,36/-0,18=2

3.48÷40×100=120-всего

120-48=72-осталось

4. 170=85%

170÷85×100=200-всего страниц

5. 5,1×(x-2)-3(1,2x-2)=5,1x-10,2-3,6x+6=1.5x-4,2

4,7(2 оценок)
Открыть все ответы
Ответ:
сел5
сел5
03.02.2020

Zadanie 4 (Задание 4)

Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.

n=1 => дерево состоит из одной вершины степени 0.

n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.

Тогда будем достраивать дерево из цепи. Ребро - простая цепь.

Алгоритм:

Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.

Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.

Если же число вершин < n, добавляем ребро.

На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.

На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .

Zadanie 5 (Задание 5)

Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство |V|-k\leq |E|\leq \left(\begin{array}{c}|V|-k\\2\end{array}\right)

Введем обозначения |V|=n, |E|=m

Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство m_i\geq n_i-1. Просуммировав неравенства для каждой из k компонент, получим m\geq n-k.

Оценка снизу получена.

Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть K_{n_1}, K_{n_2} – компоненты связности, 1. Тогда при "переносе" одной вершины из K_{n_1} в K_{n_2} число ребер увеличится на n_2-(n_1-1)0 – а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно \left(\begin{array}{c}|V|-k\\2\end{array}\right) Оценка сверху получена.

Zadanie 6 (Задание 6)

Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ​

Решение в приложении к ответу


Плата Очень нужна математика дискретная Задание 4).Найдите количество деревьев с n вершинами, в кото
4,4(69 оценок)
Ответ:
yuliadruzhko
yuliadruzhko
03.02.2020

Пошаговое объяснение:

ответ: b4.

По условиям задачи, ни боцман, ни кок до разговора не знали, где закопан клад. Значит столбцами 5 и 6 можно пренебречь, так как в них есть однозначный ответ у кока, что противоречит условиям задачи. После разговора и коку и боцману стало известно, где клад. Значит надо искать такую пару значений, в которой одно из них после разговора утрачивает актуальность. Из пар a2 a3, b4 b5, c1 c3 такой является только вторая, поскольку 5 и 6 столбец не принимаются во внимание по причине, изложенной выше. Строкой d можно пренебречь, так как после разговора боцмана и кока в ней остаётся все так же 3 переменных.

4,7(28 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ