1) Область определения: D(y) x²-2x≠0 (-∞;0) (0;2) (2;∞) 2) Множество значений функции: (-∞;∞) 3) Проверим является функция четной или нечетной: y(x)=(x-1)/(x²-2x) y(-x)=(-x-1)/(x²+2x), так как y(-x)≠-y(x) и y(x)≠y(-x), то функция не является ни четной ни не четной. 4) Найдем нули функции: у=0, получаем х-1=0; х=1 Итак график пересекат ось абсцисс в точке (1;0) 5) Найдем точки экстремума и промежутки возрастания и убывания: y'=(x²-2x-(2x-2)(x-1))/(x²-2x)²=(-x²+2x-2)/(x²-2x)² ; y'=0 -x²+2x-2=0 уравнение не имеет корней, следовательно точей экстремума функция не имеет. Так как y'< 0 на всей области определения, то функция убывает. 6) Найдем точки перегиба и промежутки выпуклости функции: y"=((2-2x)(x²-2x)²-2(x²-2x)(2x-2)(2x-x²-2))/(x²-2x)^4=(2x³-6x²+6x-4)/(x²-2x)³; y"=0 2x³-6x²+6x-4=0 (x-1)(x²-2x+4)=0 x=1 Так как промежутках (-∞;0) (0;1) y"< 0, то на этих промежутках график направлен выпуклостью вверх Так как на промежутках (1;2) (;∞) y"> 0, то на этих промежутках график направлен выпуклостью вниз. Точка х=1 является точкой перегиба функции. у (1)=0 7) Найдем асимптоты функции: а) вертикальные: lim (при х->0-) (x-1)/(x²-2x)=-∞ lim (при х->0+) (x-1)/(x²-2x)=∞ следовательно прямая х=0 является вертикальной асимптотой. lim (при х->2-) (x-1)/(x²-2x)=-∞ lim (при х->2+) (x-1)/(x²-2x)=∞ следовательно прямая х=2 является вертикальной асимптотой. б) наклонные у=kx+b k=lim (при x->∞) y(x)/x=lim (при x->∞) (x-1)/(x³-2x²)=0 b=lim (при x->∞) (y(x)-kx)=lim (при x->∞) (x-1)/(x²-2x)=0 следовательно прямая у=0 является горизонтальной асимптотой: 8) Все строй график!
а), б). Для комплексных чисел z1 = x1 + iy1, z2 = x2 + iy2 сумма и разность находятся по формулам z1 ± z2 = (x1 ± x2) + i(y1 ± y2).
В нашем случае имеем z1 + z2 = (-2 + 3) + i(5 - 4) = 1 + i, z2 - z1 = 3 - (-2) + i(-4 - 5) = 5 - 9i.
в) Перемножаем z1 и z2 как двучлены с учетом равенства i2 = -1:
z1z2 = (-2 + 5i)(3 - 4i) = (-2)3 + 15i + 8i - 20i2 = -6 + 20 + i(15 + 8) = 14 + 23i.
г) Для нахождения частного умножим числитель и знаменатель этой дроби на число, сопряженное знаменателю, т.е. на 3 + 4i; получим .