М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
6a6yle4ka
6a6yle4ka
02.03.2023 22:01 •  Математика

Заполните многоточия словами «необходимо, и достаточно», «необходимо, но не достаточно», «достаточно, но не необходимо», «не достаточно и не необходимо» так, чтобы получились верные утверждения (ответ можно не обосновывать). а)(1) Для того, чтобы число делилось на 2, …, чтобы оно было чётным.
б) Для того, чтобы параллелограмм был квадратом, …, чтобы его диагонали были перпендикулярны.
в) Для того, чтобы было истинно равенство 2x+3=9, …, чтобы x равнялось 2.
г) Для того, чтобы сумма двух чисел была нечётной,…, чтобы только одно из них было нечётным.
д) Для того, чтобы треугольник был прямоугольным, …, чтобы сумма квадратов двух его сторон равнялась квадрату третьей стороны.

👇
Ответ:
Lerochka1998
Lerochka1998
02.03.2023

дайте лучший ответ

4,4(65 оценок)
Открыть все ответы
Ответ:
prkf
prkf
02.03.2023

Пошаговое объяснение:

Алгоритм решения задач на составление уравнений в 5 классе.

Многие задачи в 5 классе решаются с уравнений. От учеников при этом требуется выяснить все величины, участвующие в задаче, отделить известные от неизвестных, установить зависимость между ними, выбрать одну из них для составления уравнения.

При решении задач на составление уравнений можно выделить три этапа:  

распознавание величин, участвующих в задаче;

установление зависимостей между величинами;

запись одной величины через другую.

На первом этапе происходит знакомство с всевозможными величинами (стоимость, масса, путь, скорость, время и т.д.). Я читаю несколько предложений и учеников установить, о каких величинах идёт речь в каждом предложении. На втором этапе ученики устанавливают, в каком случае величины суммируются, а в каком случае они вычитаются. Я говорю: в задачах, где требуется сравнить величины, встречаются такие слова: «больше», «меньше», «дешевле», «дороже», «выше», «ниже», «быстрее», «медленнее» и т.д. Узнать же, насколько одна величина больше или меньше другой можно действием вычитания. А на суммирование величин указывают следующие слова: «всего собрали», «всего сделали», «общая масса» и т.д.

Итак, ученик и выслушивают предложения, определяют о каких величинах идёт речь, устанавливают: сравниваются ли они или суммируются и схематически записывают зависимость между ними. Например:

Путь, пройденный путешественниками навстречу друг другу за одно и тоже время равен 18км.

Величины:  S1 – путь первого путешественника,

                   S2 – путь второго путешественника.

                   S1 + S2 = 18

2) Слонёнок и слониха вместе весят 7200 кг.

Величины:  m1 – масса слонихи,

                   m2 – масса слонёнка.

                    m1 + m2 = 7200  

Бутылка с виноградным соком стоит 60 коп.

Величины: р1  - стоимость бутылки,

                  р2  - стоимость сока.

                  р1 + р2 = 60

За одно и тоже время первый турист на 5 км больше, чем второй.

Величины:  s1 – путь первого туриста,

                   s2 – путь второго туриста.

                   s1 – s2 = 5

Затем ученикам даётся схема решения задач на составление уравнений:

перечислить величины, данные в условии задачи.

выбрать меньшую величину из неизвестных величин и обозначить через х.

остальные неизвестные выразить через меньшую величину, т.е. через х.

выяснить сравниваются или суммируются величины.

составить схему уравнения.

Эта схема позволяет ученикам увидеть закономерности между величинами.

Задача: школьники собрали всего 1650 кг картофеля, причём до обеда было собрано в 2 раза больше, чем после обеда. Сколько картофеля собрали школьники после обеда?

Ученики читают условие задачи и устанавливают, что

в условие задачи входят величины масса картофеля, собранного до обеда и масса картофеля, собранного после обеда, общая масса собранного картофеля.

Масса картофеля, собранного после обеда меньше. Её принимаем за х.

Тогда масса картофеля, собранного до обеда, равна 2х кг.

1650 – сумма величин, т.к. в задаче говорится, что всего собрали 1650кг.

Составляется уравнение: 2х + х = 1650.

Итак, этот алгоритм решения задач на составление уравнений учит учеников видеть величины, заданные в условии задачи, и вскрывать связи между ними. А это формированию навыка самостоятельно анализировать новые частные случаи без дополнительного объяснения.

4,7(24 оценок)
Ответ:
Шаригул
Шаригул
02.03.2023

ответ:

різниця двох чисел праворуч і ліворуч від будь-якого числа завжди дорівнює 2.

наприклад, числа : 7; 8; 9 ⇒ 9 - 7 = 2 - різниця

                                  15; 16; 17 ⇒ 17 - 15 = 2 - різниця

                                  28; 27; 29 ⇒ 29 - 27 = 2 - різниця

звідси знаходимо саме число :

2 * 2 = 4 - число, яке обвів боря.

                                 

4,8(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ