1. Прямая и окружность имеют две общие точки, если расстояние от центра окружности до прямой меньше радиуса окружности.
2. Если прямая АВ - касательная к окружности с центром О и В - точка касания, то прямая АВ и радиус ОВ перпендикулярны.
3. Угол АОВ является центральным, если точка О является центром окружности, а лучи ОА и ОВ пересекают окружность. (отрезки ОА и ОВ будут являться радиусами окружности)
4. Вписанный угол, опирающийся на диаметр, равен 90°.
5. Дано: ∠АСD=31°.
∠ABD = 31° (т.к. он вписанный и опирается на ту же дугу, что и ∠АСD), ∠AOD = 62° (∠AOD центральный и опирается на ту же дугу, что и ∠АСD
. Следовательно он в два раза больше ∠AСD).
6.Если хорды АВ и CD окружности пересекаются в точке Е, то верно равенство
DЕ·ЕС = АЕ·ЕВ.
7.Если АВ- касательная, AD - секущая, то выполняется равенство
АВ² = АD·АС.
8. Если четырехугольник ABCD вписан в окружность, то сумма его противоположных углов равна 180°.
9. Центр окружности, вписанной в треугольник, совпадает с точкой пересечения биссектрис этого треугольника.
10. Если точка А равноудалена от сторон данного угла, то она лежит на биссектрисе этого угла.
11. Если точка В лежит на серединном перпендикуляре, проведенному к данному отрезку, то она равноудалена от концов этого отрезка.
12. Около любого треугольника можно описать окружность.
решение: 1) 1 - 1/5= 4/5 всех денег осталось после первой покупки, 2) 4/5 * 3/7 = 12/35 - часть денег, которую человек заплатил за ii игрушку, 3) 4/5 - 12/35 = 16/35 остаток после двух покупок, 4) 16/35 * 3/5 = 48/175 - плата за iii игрушку, 5) 16/35 – 48/175 = 42/175 оставшаяся часть денег, 6)192 : 42/175 = 1050 копеек (10 руб 50 коп) - было в кошельке первоначально, 7) 1050 * 12/35=360 копеек (3 руб 60 коп) заплачено за вторую игрушку,ответ: было в кошельке 4рубля 50 копеек, вторая игрушка стоит 154 2/7 коп.
авфафв
Пошаговое объяснение:
афвафвафвфва