Чтобы найти угол наклона касательной к кривой в заданной точке, нам потребуется найти производную функции, а затем подставить значение абсциссы точки в найденную производную.
1. Найдем производную функции y=1/12 x^3+5. Для этого воспользуемся правилом дифференцирования степенной функции: если y = x^n, то dy/dx = n*x^(n-1). В данном случае n=3.
2. Теперь найдем значение производной в точке, абсцисса которой равна 2. Для этого подставим x=2 в найденную производную:
dy/dx = 1/4 * (2)^2 = 1/4 * 4 = 1
3. Наклон касательной к кривой, направленной в точке (2, y), определяется значением производной в данной точке.
Таким образом, угол наклона касательной к кривой y=1/12 x^3+5 в точке, абсцисса которой равна 2, равен 1. Обычно угол наклона измеряется в радианах, так что ответ можно дополнить указанием, что угол наклона равен 1 радиану.
1. Нам дано выражение (x^3 - x + 2) в степени 7 и мы хотим найти коэффициент при x в 5 степени.
2. Возведем данное выражение в степень 7, используя бином Ньютона. Бином Ньютона представляет собой формулу для разложения выражения вида (a + b)^n, где n - степень, в которую нужно возвести выражение, a и b - какие-то числа.
Для нашего выражения (x^3 - x + 2)^7 у нас есть a = x^3, b = -x и n = 7. Тогда формула бинома Ньютона выглядит так:
Все члены, у которых степень x равна 5, это только первый и второй члены: x^21 и -7x^18. Они являются слагаемыми, содержащими x в 5 степени.
Таким образом, коэффициент при x в 5 степени из разложения выражения (x^3 - x + 2)^7 равен сумме коэффициентов при этих двух слагаемыx:
x^21 + (-7x^18)
Это и будет ответом на задачу.
Мне хотелось бы отметить, что данное решение является достаточно сложным и требует навыков работы с биномом Ньютона и возведением в степень. Однако, с хорошим пониманием этих концепций, школьник сможет успешно решить данный вопрос.
-9m-23