1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.
Пошаговое объяснение:
Формула площади треугольника через углы и сторону такова:
S= 1/2 а² × (sin Alpha × sin Beta) /sin Yamma - а именно,
если известна одна сторона треугольника и два прилежащих к ней угла, то S данного треугольника равна половине квадрата данной стороны умноженная на дробь, в числителе которой, произведение синусов прилежащих углов, а в знаменателе синус противолежащего угла.
По условию задачи нам известна не сторона, а площадь - она равна половине площади боковой грани, то есть 1/2 Q. Также нам известны углы высеченного диагональю боковой грани треугольника. Они равны : Alpha, 90° (так как призма правильная) и 90°- Alpha (третий угол равен 180°- Alpha - 90°)
Подставим значения в формулу:
1/2 Q = 1/2 а² × sin Alpha × sin 90° / sin (90°-Alpha)
Q=a² × sin Alpha ×1 / sin (90°-Alpha)
a= √ (Q × sin (90°-Alpha) / sin Alpha)
Таким образом мы нашли сторону основания призмы. Используя ту же формулу площади треугольника по 1 стороне и углам, найдём площадь основания.
Треугольник в основании призмы правильный - то есть, все его углы и стороны равны. Значит все углы в нём равны 180°:3=60°
Sосн. =(Q × sin (90°-Alpha) / sin Alpha) × (sin 60°)² / sin 60°
S осн.= (Q × sin (90°-Alpha) / sin Alpha) × √3/2
Теперь можно записать площадь призмы. Она равна сумме тройной площади боковой грани и двойной площади основания.
S полной поверхности призмы = 3Q + Q × sin (90°-Alpha) / sin Alpha × √3