ответ:Сначала найдем саму функцию вида у=ax^2+bx+с, заменив переменные a, b и c числами. Для этого подставляем известные значения х и у:
а*0+b*0+с=4, отсюда находим с=4
a*1+b*1+4=-1, отсюда находим а=-5-b
(-5-b)*4+b*2+4=-4, отсюда находим b=-6 и подставляя это значение во второе уравнение находим, что a=1
Теперь ищем ее вершину:
По формуле вершин для парабол: х=-b/2a; y=(b^2-4ac)/4a, отсюда находим х=-((-6)/2*1)=3; у=-(((-6)^2-4*1*4)/(4*1))=-5
Альтернативно можно было бы решить через производную, результат бы не изменился.
ответ: координатой вершины является точка(3|-5).
Пошаговое объяснение:
3
Объяснение:
2022^(2021) + 2019^(2018) = ...2 + ...1 = ...3
|) 2022^(2021):
так как
1)2022^1=2022=...2
2)2022^2=...(2*2)=...4
3)2022^3=...(4*2)=...8
4)2022^4=...(8*2)=...(16)=...6
5)2022^5=...(6*2)=...(12)=...2
6)2022^6=...(2*2)=...4
7)2022^7=...(4*2)=...8
8)2022^8=...(8*2)=...(16)=...6
9)2022^9=...(6*2)=...(12)=...2
и т.д.
Следовательно:
При возведении в степень последней цифры, последние цифры ответа чередуются следующим образом:
( 2, 4, 8, 6) , (2, 4, 8, 6), ... (повтор по 4 элемента)
2021 / 4 = 505 (остаток 1) → 505 раз будут последовательно чередоваться цифры (2, 4, 8, 6) и в конце будет ещё 1 цифра = 2 → 2022^2021 = ...2
II) 2019^(2018)
так как
1) 2019^1 = 2019 = ...9
2) 2019^2=...(9*9)=...(81)=...1
3) 2019^3 = ...(1*9)=...9
4) 2019^4=...(9*9)=...(81)=...1
5) 2019^5 = ...(1*9)=...9
и т.д.
Следовательно,
При возведении в степень последней цифры, последние цифры ответа чередуются следующим образом:
( 9,1) , (9,1), (9,1), ... (повтор по 2 элемента)
2018 / 2 = 1009 (остаток 0) → 1009 раз будут последовательно чередоваться цифры (9, 1) → 2019^2018 = ...1
я очень старался если можешь отметь лучшим и поставь
Пошаговое объяснение:
360:24=15-ширина
(15+24)*2=78см- периметр прямоугольника
78*3=234см-периметр квадрата
234:4=58.5см-длина квадрата
58.5*58.5=3422.25см/2-площадь квадрата