Жил-был Квадрат. В его стране все было квадратным: дома, клумбы, часы. Даже блинчики, которые пекла его мама, были квадратными.Все друзья и соседи были одинаковые. Однажды Квадрат спросил у своей мамы: "Почему мы никогда не ходим в соседний город?"- "Там живут другие фигуры, они не такие, как мы!" - ответила мама.Квадрату стало очень любопытно. Неужели есть другие фигуры? Решил он отправиться в путешествие. И вот, Квадрат вошел в соседний город. И вдруг, он увидел, как прямо на него несется что-то непонятное. Квадрат зажмурил глаза.- "Привет, ты кто?" - вдруг услышал он. Он открыл глаза и увидел мальчика, у которого совсем не было углов.- "Я квадрат. Я из соседнего города. А ты кто?"- "А я - Круг".- "Как ты можешь двигаться так быстро?"- "Это я на велосипеде. Машина ездит еще быстрее!"- "А у нас нет ни машин, ни велосипедов".- "Конечно, ведь квадратные колеса не могут крутиться".
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.