ответ: Используем геометрическое определение вероятности события A — "встреча с другом состоится".Если площадь S(X) фигуры X разделить на площадь S(A) фигуры A , которая целиком содержит фигуру X, то получится вероятность того, что точка, случайно выбранная из фигуры X, окажется в фигуре A.
Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть
y-x<6 , y<x+6 (y>x) и
x-y<6 , y>x-6 (y<x).
Этим неравенствам удовлетворяют точки, лежащие в области Х.
Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6.
Кроме этого точки должны находиться в квадрате ОАВС.
Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54:
S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.
ответ: дальность броска француза составляет 66% от броска американца.
Если обозначить дальность броска американца за х. Тогда дальность броска русского равна 1,13х (по задаче).
Теперь нужно найти дальность броска немца (дальность броска русского делим на 1,21, так как бросок русского составляет 121% от броска немца):
1,13х : 1,21 = (113/121)x.
Теперь находим дальность броска француза (умножаем дальность броска немца на 0,71, так как дальность броска француза составляет 71% от броска немца):
(113/121)х * 0,71 = (8023 / 12100)x = 0.66305785124...
Теперь сравниваем дальность броска американца и француза:
Американец: 1х; 100%.
Француз: 0.66305785124 ... х; ≈ 66%.
Следовательно, дальность броска француза составляет 66% от броска американца.
3,2 - 15y = 1
3,2 - 1 = 15y
2,2 = 15y
y = 0.14(6)
4x - 0,3y = 19.7
4x - 0.044 = 19.7
4x = 19.744
x = 4.936
ответ: y = 0.14(6), x = 4.936.
Сердечко и лучший ответ пожожда :)