Построй трапецию ABCD, где AD-большее основание. Построй две высоты: BE и CH. Смотрим: BE и CH перпенд. AD =>BE парал. CH, BC парал. AD (по опред. трап.) => BCпарал. BC. Из этого следует, что BCEH - параллелограмм=> BE=CH и BC=EH Смотрим треуг. ABE и треуг. CDH т. к. BE и CH перпенд. AD, то треуг. ABE и треуг. CDH - прямоуг. BE=CH AB=CD (по усл. ) треуг. ABE = треуг. CDH (по гип. и катету) => AE=HD Смотрим треуг. ACH он прямоуг. , т. к. CH перп. AH По т. Пифагора AH= корень из (AC^2-CH^2)=8см S=(BC+AD)CH/2=(BC+AE+EH+HD)CH/2=2*AH*CH/2=AH*CH=48 см^2
Вот как то так! Если не жалко сделай лучшим ответом и подпишитесь на меня и лайкните! С уважением Arolok!
SO_|_(ΔABC), O- центр правильного ΔАВС
центр правильного треугольника - точка пересечения медиан, биссектрис, высот, которые в точке пересечения делятся в отношении 2:1 считая от вершины.
высота правильного треугольника вычисляется по формуле:
h= \frac{a \sqrt{3} }{2}h=2a3
h=6√3*√3/2, h=9. OK=(1/3)*СК, ОК=3 см
SK_|_AB.
прямоугольный ΔSOK:<SOK=90°, SO=4 см, ОК=3 см
по теореме Пифагора:SK²=SO²+OK²
SK²=4²+3²
SK=5
ответ: расстояние от S до сторон правильного треугольника равно 5 см