3
Пошаговое объяснение:
Проверим каждое из утверждений.
1) «Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом» — неверно, поскольку у любого параллелограмма противоположные стороны равны, однако он не обязан быть ромбом. Правильно утверждение: параллелограмм является ромбом, только если смежные стороны равны.
2) «Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат» — неверно, поскольку существуют четырёхугольники с равными взаимно перпендикулярными диагоналями, но не являющиеся квадратами. Правильное утверждение: Если в четырёхугольнике две диагонали равны и перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник — квадрат.
3) «Если в ромбе диагонали равны, то такой ромб является квадратом» — верно.
4) «Углы при меньшем основании трапеции тупые» — неверно, например, у прямоугольной трапеции только один угол при меньшем основании тупой.
401:3=133 ост 2
133:3=44 ост. 1
44:3=14 ост. 2
14:3=4 ост. 2
4:3=1 ост.1
1:3=0 ост.1
1122120₃
2. 43020:5=8604 ост. 0
8604:5=1720 ост. 4
1720:5=344 ост.0
344:5=68 ост.4
68:5=13 ост.3
13:5=2 ост.3
2:5=0 ост.2
2334040₅
3.
70652:8=8831 ост.4
8831:8=1103 ост.7
1103:8=137 ост.7
137:8=17 ост.1
17:8=2 ост.1
2:8=0 ост.2
211774₈