Высота цилиндра составляет 11 см, а основной радиус - 3 см. Вычислите площадь основания цилиндра и объем цилиндра! (В расчетах используется приближенное соотношение π = 3.)
a) (A ∩ B) ∩ C. Согласно правил выполнения операций над множествами, сначала выполним операцию пересечения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В. Следовательно, A ∩ B = {c, d}. Теперь найдём пересечение найденного множества и множества С. Для них общим элементом является лишь один элемент c. Итак, (A ∩ B) ∩ C = {c}.
b) (A U B) U C. Согласно правил выполнения операций над множествами, сначала выполним операцию объединения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В; их включаем в объединение только один раз. Следовательно, A U B = {a, b, c, d, e, f}. Теперь найдём объединение найденного множества и множества С. Имеем (A U B) U C = {a, b, c, d, e, f, g, k }.
Общее число кубиков по формуле объема N = 4*5*6 = 120 штук - всего. По три грани окрашено - в вершинах N3= 8 шт По две грани окрашено - на четырёх ребрах без вершин - уменьшаем длину ребра на 2 см каждое. N2= 4*(2+3+4)= 4*9 = 36 штук По одной грани - по 2 грани на 2 см меньше N1 = 2*(2*3+2*4 + 3*4) = 2*(6+8+12) = 52 кубика Совсем не окрашено - внутри кубика - все размеры уменьшаем на 2 см. N0 = 2*3*4 = 24 шт. Проверка: ВСЕГО =8 (по три) + 36 (по две) +52 (по одной) + 24 (не окр.) = 120 шт. ответ: (текст по проверке)
a) [c] [a, b, c, d, e, f, g, k].
Пошаговое объяснение:
a) (A ∩ B) ∩ C. Согласно правил выполнения операций над множествами, сначала выполним операцию пересечения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В. Следовательно, A ∩ B = {c, d}. Теперь найдём пересечение найденного множества и множества С. Для них общим элементом является лишь один элемент c. Итак, (A ∩ B) ∩ C = {c}.
b) (A U B) U C. Согласно правил выполнения операций над множествами, сначала выполним операцию объединения множеств А и В, которая заключена в скобки. Анализ элементов множеств показывает, что элементы c и d являются общими для множеств А и В; их включаем в объединение только один раз. Следовательно, A U B = {a, b, c, d, e, f}. Теперь найдём объединение найденного множества и множества С. Имеем (A U B) U C = {a, b, c, d, e, f, g, k }.
ответ: а) {c}; {a, b, c, d, e, f, g, k }.