Kx-4=x^2+3xkx-4-x^2-3x=0x^2+3x-kx+4=0x^2+(3-k)x+4=0нужна одна общая точка значит D=0D=(3-k)^2-4*4=(3-k)^2-4^2=(3-k-4)(3-k+4)=(-k-1)(-k+7)k=7 k=-1теперь подставляем. 7x-4=x^2+3x7x-4-x^2-3x=0x^2-4x+4=0D=0 x=2 7x-4=7*2-4=10 ответ (2.10)можно посторить график, а можно ситстемой решатьвот ситсемаy=kx-4y=x^2-3x значок системыkx-4=x^2-3xx^2-3x-kx+4=0 значок системыдорешиваем последнее уравнениеx^2-(3+k)x+4=0чтобы прямая и парабола имели одну общую точку, полученное уравнение (которое последнее во второй системе) должно иметть один корень, значи D=0D=(-(3+k))^2-4*4=(3+k)^2-4^2=(3+k-4)(3+k+4)=(k-1)(k+7)D=0, значит (k-1)(k+7)=0k^2+6k-7=0k1=7 k2=-1теперь подставляем k 1) 7x-4=x^2-3x x^2-10x+4=0 D1=25-4=21 x1,2=(5 + - корень из 21)2) -х-4=х^2-3х х^2-2x+4=0 D<0 корней нет
1) -3(x-4) > x - 4(x-1) -3x+12 > x-4x+4 -3x+12 > -3x+4 12-4 >-3x+3x 8 > 0 x ∈ R ( ответом является множество всех действительных чисел)
2)
3) 1) 15 мин. = 15/60 ч. = 0,25 часа 2,5 - 0,25 = 2,25 (ч.) время в пути лодки на путь туда обратно. 2) Скорость течения - х км/ч По течению реки: время в пути t1 = 20 / (18+х) (ч.) Против течения реки : время в пути t2 = 20/ (18-х) (ч.) Время на весь путь : t1+t2 = 2.25 ч. 20/ (18+х) + 20/ (18-х) = 2,25 |× (18-x)(18+x) 20(18-x) +20 (18+x)= 2.25(18-x)(18+x) 360-20x +360 +20x = 2.25 (18²-x²) 720 = 2.25(324-x²) |÷2.25 320 = 324-x² x²=324-320 x²= 4 x= √4 x₁= 2 (км/ч) скорость течения реки x₂= -2 - не удовлетворяет условию задачи. ответ: 2 км/ч.
решение смотри на фотографии