Пошаговое объяснение:
Длина окружности C=πD = 3.14*10=31.4 см.
S=πD²/4 = 3.14*10²/4 = 3.14*100/4=3.14*25= 78.5 см².
Запишем систему в виде расширенной матрицы:
3 2 3
4 1 1
2 3 -4
4
4
-5
Умножим 1-ю строку на (4). Умножим 2-ю строку на (-3). Добавим 2-ю строку к 1-й:
0 5 9
4 1 1
2 3 -4
4
4
-5
Умножим 3-ю строку на (-2). Добавим 3-ю строку к 2-й:
0 5 9
0 -5 9
2 3 -4
4
14
-5
Добавим 2-ю строку к 1-й:
0 0 18
0 -5 9
2 3 -4
18
14
-5
Теперь исходную систему можно записать так:
x3 = 18/18
x2 = [14 - (9x3)]/(-5)
x1 = [-5 - (3x2 - 4x3)]/2
Из 1-й строки выражаем x3
х3=18/18=1
Из 2-й строки выражаем x2
х2= (14-9*1) / -5= -1
Из 3-й строки выражаем x1
х1=2/2=1
Пошаговое объяснение:
На сторонах AB и BC треугольника ADC взяты точки D и E соответственно так, что AD:BD = 1:2 и CE:BE = 2:1. Отрезки AE и CD пересекаются в точке O. Найти площадь треугольника ABC, если площадь треугольника BCO равна 1.
Рассмотрим ∆ АВЕ.
По т Менелая (ВD:DA)•(AO:OE)•(CE:CB)=1
2/1•(AO:OE)•2/3=1, откуда АО:ОЕ=3:4
ОЕ делит ВС в отношении 1:2, считая от В.
Высота ∆ СОЕ и ∆ СОВ общая.
Отношение площадей треугольников с равными высотами равно отношению их оснований. СЕ:СВ=2/3⇒
Ѕ(ВОС)=1, значит, Ѕ(СОЕ)=2/3
В ∆ АСЕ отрезок СО делит АЕ в отношении 3:4, считая от А.
Высота ∆ АСЕ и ∆ СОЕ, проведенная из вершины С, общая.
Тогда Ѕ(САЕ)=2/3:4•7=7/6
Высота ∆ АВС и ∆ АСЕ общая.⇒
Ѕ АВС=Ѕ(АСЕ):2•3=(7/6):2•3=7/4
Пошаговое объяснение:
d = 10 см
C = 2πr = πd - длина окружности
C = 10π см
- площадь круга
см²
Если нужны приближенные значения, то
C = 10π ≈ 10 *3,14 = 31,4 см
S = 25π ≈ 78,5 см²
ответ: C = 10π см ≈ 31,4 см, S = 25π см² ≈ 78,5 см².