1) 9 - 2 · (-4х + 7) = 7
2 · (-4х + 7) = 9 - 7
2 · (-4х + 7) = 2
-4х + 7 = 2 : 2
-4х + 7 = 1
-4х = 1 - 7
-4х = -6
х = -6 : (-4)
х = 1,5
Проверка: 9 - 2 · (-4 · 1,5 + 7) = 7
9 - 2 · (-6 + 7) = 7
9 - 2 · 1 = 7
7 = 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2) 9 + 10 · (3х - 10) = 2
10 · (3х - 10) = 2 - 9
10 · (3х - 10) = -7
3х - 10 = -7 : 10
3х - 10 = -0,7
3х = 10 - 0,7
3х = 9,3
х = 9,3 : 3
х = 3,1
Проверка: 9 + 10 · (3 · 3,1 - 10) = 2
9 + 10 · (-0,7) = 2
9 + (-7) = 2
2 = 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 7 + 9 · (4х + 5) = -2
9 · (4х + 5) = -2 - 7
9 · (4х + 5) = -9
4х + 5 = -9 : 9
4х + 5 = -1
4х = -1 - 5
4х = -6
х = -6 : 4
х = -1,5
Проверка: 7 + 9 · (4 · (-1,5) + 5) = -2
7 + 9 · (-1) = -2
7 - 9 = -2
-2 = -2
y = 12x - x^3
y' = 12 - 3x^2
Отыщем точки экстремума, прировняв производную к нулю:
3x^2 = 12 <=> x^2 = 4 <=> x = {-2; 2}
На отрезок x = [-1;3] попадает точка x = 2:
..[-123]
От -1 до 2 производная положительная, значит функция возрастает, а от 2 до 3 убывает => x = 2 - точка максимума и функция принимает наибольшее значение в y(2) = 12 * 2 - 2 ^ 3 = 24 - 8 = 16.
Наименьшее будет на концах отрезка [-1;3]: y(-1) = -12 + 1 = -11; y(3) = 12 * 3 - 3^3 = 36 - 27 = N > -11 => -11 - наименьшее значение.
ответ: y(min) = -11; y(max) = 16