63.
Пошаговое объяснение:
Рассмотрим все пары натуральных чисел, удовлетворяющих условию m+n=16:
1) 1 и 15 взаимно простые, произведение 1•15 = 15;
2) 2 и 14 не являются взаимно простыми, (например, имеют общий делитель 2);
3) 3 и 13 взаимно простые, произведение 3•13 = 39;
4) 4 и 12 не являются взаимно простыми, (например, имеют общий делитель 2);
5) 5 и 11 являются взаимно простыми, произведение 5•11 = 55;
6) 6 и 10 не являются взаимно простыми, (например, имеют общий делитель 2);
7) 7 и 9 являются взаимно простыми, произведение 7•9= 63;
8) Пара 8 и 8 не удовлетворяет условию, слагаемые не являются взаимно простыми, (например, имеют общий делитель 2)
Остальные пары чисел будут отличаться лишь порядком следования и были рассмотрены.
Наибольшее произведение слагаемых 7 и 9 равно 7•9= 63.
1111:11=101, т.е.
число содержащее 4 единицы делим на 11 и получаем 2 единицы и 1 ноль. Таким образом 4единицы:2единицы=2единицы и 2-1=1 ноль
111111:11=10101, т.е.
число содержащее 6 единиц делим на 11 и получаем 3 единицы и 2 ноля. Таким образом 6единиц:2единицы=3единицы и 3-1=2 ноля
11111111:11=1010101, т.е.
число содержащее 8 единицы делим на 11 и получаем 4 единицы и 3 ноля. Таким образом 8единицы:2единицы=4единицы и 4-1=3 ноля
Следовательно, если число содержащее 2016 единиц разделить на 11 мы получим:
2016единиц:2единицы=1008единиц и 1008-1=1007 нолей