Всего чисел - 25, сумма любой тройки из них меньше 58.
То есть, нам известно что:
a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25
a1+a2+a3<58
a4+a5+a6<58
a7+a8+a9<58
a10+a11+a12<58
a13+a14+a15<58
a16+a17+a18<58
a19+a20+a21<58
a22+a23+a24<58
Сложим все 8 неравенства:
(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+(a10+a11+a12)+(a13+a14+a15)+(a16+a17+a18)+(a19+a20+a21)+(a22+a23+a24)<(100+100+100+100+100+100+100+100)<=>a1+a2+...+a22+a23+a24<800
1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
x - 5 ширина
Sпр = 150 см
x * (x - 5) = 150
x * x - 5x = 150
x = 15 (длина)
х-5 = 15-5 = 10 ширина
Sкв = 15 * 15 = 225 (см^2)
вот по второй - затрудняюсь(((