ответ:
пусть первое из трёх последовательных, натуральных чисел равно х, тогда следующее за ним число равно (х + 1), а третье число равно (х + 1) + 1 = х + 2. из трёх натуральных чисел х, х + 1, х + 2, меньшим будет число х, и его квадрат равен х^2. произведение двух других чисел равно (х + 1)(х + 2). по условию известно, что квадрат первого числа меньше произведения второго и третьего чисел на ((х + 1)(х + 2) - х^2) или на 44. составим уравнение и решим его.
(х + 1)(х + 2) - х^2 = 44;
х^2 + 2х + х + 2 - х^2 = 44;
3х + 2 = 44;
3х = 44 - 2;
3х = 42;
х = 42 : 3;
х = 14 - первое число;
х + 1 = 14 + 1 = 15 - второе число;
х + 2 = 14 + 2 = 16 - третье число.
ответ. 14; 15; 16.
пошаговое объяснение:
Альфа I, Дельта II, Гамма III, Бетта IV
Пошаговое объяснение:
Альфа I и Бетта II --> первое утверждение
Альфа II и Гамма III --> второе утверждение
Дельта II и Гамма IV --> третье утверждение
Если Альфа I, то Бетта НЕ II --> следует из первого утверждения
Если Альфа I, то Альфа НЕ II и Гамма III --> следует из первого и второго утверждения
Если Гамма III, то Гамма НЕ IV и Дельта II --> следует из второго и третьего утверждения
Значит Бетта IV, потому как остальные места заняты
Альфа I Верно и Бетта II Неверно --> первое утверждение
Альфа II Неверно и Гамма III Верно --> второе утверждение
Дельта II Верно и Гамма IV Неверно --> третье утверждение