ДОМАШНЕЕ ЗАДАНИЕ 9 Составь и реши уравнения. а) Арман задумал число, разделил его на 2. Результат увели- чил в 302 раза и получил число 82 748. Какое число задумал Арман?
Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катетыравнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. Длина этой гипотенузы дана в условии - 4 см Пусть х - катеты этого треугольника 4=х√2 х=4:√2=4√2:(√2*√2)=2√2 Диагональ основания квадрата =2√2 Высота призмы =2√2 Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. Радиус этой окружности равен половине стороны квадрата - основания призмы. Найдем эту сторону из формулы диагонали квадрата: d=а√2 Мы нашли d=2√2, значит сторона квадрата а=2 r= 2:2=1 Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. S =2πr*h= 2π*2√2 см²=4π√2 см²
Однажды я со своими друзьями решили слетать на планету Марс. Мы надели скафанрры, сели в наш корабль и полетели. Вот мы оказались в открытом космосе. Вокруг нас летали кометы, и ярко светили звёзды. Вскоре мы долетели до планеты Марс. Первой ступила на Марс я. Затем мои друзья. Я осмотрела вокруг и увидела, что на этой планете множество кратеров и очень низская температура. Опять мы сели в наш корабль, но тут аварийная сигнализация! И тут я проснулась! Это звонил будильник в школу! Оказывается это был просто сон, зато фантастический!
Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катетыравнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы.
Длина этой гипотенузы дана в условии - 4 см
Пусть х - катеты этого треугольника
4=х√2
х=4:√2=4√2:(√2*√2)=2√2
Диагональ основания квадрата =2√2
Высота призмы =2√2
Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью.
Радиус этой окружности равен половине стороны квадрата - основания призмы.
Найдем эту сторону из формулы диагонали квадрата:
d=а√2
Мы нашли d=2√2, значит сторона квадрата а=2
r= 2:2=1
Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения
r =1
Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра.
S =2πr*h= 2π*2√2 см²=4π√2 см²