М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
angel2261
angel2261
11.09.2022 12:08 •  Математика

Случайная величина имеет нормальное распределение с математическим ожиданием 1.7 и стандартным отклонением 4. а) Какова вероятность попадания такой случайной величины в интервал (1; 2)? б) Покажите математическое ожидание и вычисленную вероятность на графике плотности этого нормального распределения

👇
Ответ:
AyanCoolgirlBaku
AyanCoolgirlBaku
11.09.2022
Привет! Конечно, я могу помочь вам с этим вопросом.

а) Для решения задачи нам потребуется использовать таблицу стандартного нормального распределения или калькулятор, способный рассчитывать значения функции стандартного нормального распределения (например, Excel или онлайн-калькуляторы).

Итак, чтобы вычислить вероятность попадания случайной величины в интервал (1; 2), мы сначала стандартизируем значения 1 и 2 с помощью формулы стандартизации Z = (X - μ) / σ, где X - значение случайной величины, μ - математическое ожидание и σ - стандартное отклонение.
Для значения 1: Z = (1 - 1.7) / 4 = -0.175
Для значения 2: Z = (2 - 1.7) / 4 = 0.075

Теперь нам нужно найти вероятность того, что случайная величина будет находиться между стандартизированными значениями -0.175 и 0.075. Мы будем искать эту вероятность в таблице стандартного нормального распределения или в калькуляторе.
Применяя таблицу или калькулятор, мы находим, что вероятность составляет приблизительно 0.0754 или 7.54%.

б) Чтобы показать математическое ожидание и график плотности нормального распределения, нам понадобится график плотности функции нормального распределения, также известный как кривая Гаусса.

Формула плотности нормального распределения записывается как f(x) = (1 / (σ * √(2π))) * exp^(-((x - μ)^2) / (2σ^2)), где x - значение случайной величины, μ - математическое ожидание и σ - стандартное отклонение.

В нашем случае, μ = 1.7 и σ = 4. Подставим эти значения в формулу и построим график.

По вертикальной оси графика будет откладываться значение плотности вероятности, а по горизонтальной оси - значения случайной величины. С помощью графика можно визуально оценить, какие значения более вероятны и какова вероятность их появления.

Ответ:
а) Вероятность попадания случайной величины в интервал (1; 2) составляет примерно 7.54%.
б) График плотности нормального распределения с математическим ожиданием 1.7 и стандартным отклонением 4 позволяет визуально оценить вероятность разных значений случайной величины.
4,5(85 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ